--- library_name: peft license: apache-2.0 base_model: heegyu/WizardVicuna-open-llama-3b-v2 tags: - axolotl - generated_from_trainer model-index: - name: 18be2b81-aa2a-4445-b11e-1171d642870a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna-open-llama-3b-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 881f6cdbe74879bb_train_data.json ds_type: json format: custom path: /workspace/input_data/881f6cdbe74879bb_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/18be2b81-aa2a-4445-b11e-1171d642870a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/881f6cdbe74879bb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 739830db-cb79-4014-8e34-b6065aa3e10e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 739830db-cb79-4014-8e34-b6065aa3e10e warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ```

# 18be2b81-aa2a-4445-b11e-1171d642870a This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.4977 | | 2.6034 | 0.0002 | 5 | 2.4275 | | 2.3117 | 0.0004 | 10 | 2.2659 | | 2.1304 | 0.0006 | 15 | 2.1137 | | 2.089 | 0.0008 | 20 | 2.0317 | | 1.9919 | 0.0010 | 25 | 2.0039 | | 1.98 | 0.0012 | 30 | 1.9978 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1