File size: 2,594 Bytes
d24935a db09b42 d24935a db09b42 d59bded 26788a7 db09b42 26788a7 7bf9907 db09b42 d59bded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: mit
language:
- en
metrics:
- bleu
- rouge
- meteor
pipeline_tag: text2text-generation
widget:
- text: >-
name: Bug report\nabout: Create a report to help us improve\ntitle:
<|EMPTY|>\nlabels: <|EMPTY|>\nassignees: <|EMPTY|>\nheadlines_type:
<|MASK|>\nheadlines: <|MASK|>\nsummary: This issue report aims to describe a
bug encountered while using the software. It includes a clear and concise
description of the issue, steps to reproduce the behavior, expected
behavior, screenshots (if applicable), and relevant versions of the
operating system, IIS, Django, and Python. Additional context may also be
provided to provide further details about the problem.
example_title: Example 1
datasets:
- nafisehNik/GIRT-Instruct
---
# GIRT-Model
paper: https://arxiv.org/abs/2402.02632
demo: https://huggingface.co/spaces/nafisehNik/girt-space
This model is fine-tuned to generate issue report templates based on the input instruction provided. It has been fine-tuned on [GIRT-Instruct](https://huggingface.co/datasets/nafisehNik/GIRT-Instruct) data.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained('nafisehNik/girt-t5-base')
tokenizer = AutoTokenizer.from_pretrained(nafisehNik/girt-t5-base)
# method for computing issue report template generation
def compute(sample, top_p, top_k, do_sample, max_length, min_length):
inputs = tokenizer(sample, return_tensors="pt").to('cpu')
outputs = model.generate(
**inputs,
min_length= min_length,
max_length=max_length,
do_sample=do_sample,
top_p=top_p,
top_k=top_k).to('cpu')
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=False)
generated_text = generated_texts[0]
replace_dict = {
'\n ': '\n',
'</s>': '',
'<pad> ': '',
'<pad>': '',
'<unk>!--': '<!--',
'<unk>': '',
}
postprocess_text = generated_text
for key, value in replace_dict.items():
postprocess_text = postprocess_text.replace(key, value)
return postprocess_text
prompt = "YOUR INPUT INSTRUCTION"
result = compute(prompt, top_p = 0.92, top_k=0, do_sample=True, max_length=300, min_length=30)
```
## Citation
```
@article{nikeghbal2024girt,
title={GIRT-Model: Automated Generation of Issue Report Templates},
author={Nikeghbal, Nafiseh and Kargaran, Amir Hossein and Heydarnoori, Abbas},
journal={arXiv preprint arXiv:2402.02632},
year={2024}
}
```
|