--- base_model: DeepPavlov/rubert-base-cased-sentence datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:29127 - loss:MultipleNegativesRankingLoss widget: - source_sentence: 'Медицинское освидетельствование на состояние опьянения (алкогольное, наркотическое и иное токсическое согласно приказу МЗ РФ № 933н от 18.12.2015г.)' sentences: - Патолого-анатомическое исследование биопсийного (операционного) материала матки, придатков, стенки кишки - Медицинское освидетельствование на состояние опьянения (алкогольного, наркотического или иного токсического) - Определение содержания антител к эндомизию в крови - source_sentence: УЗИ придаточных (верхнечелюстных) пазух sentences: - Рентгенография позвоночника, вертикальная - Прием (осмотр, консультация) врача-офтальмолога первичный - Ультразвуковое исследование околоносовых пазух - source_sentence: Прием (осмотр, консультация) врача-челюстно-лицевого хирурга повторный sentences: - Магнитно-резонансная томография шеи - Тимпанометрия - Прием (осмотр, консультация) врача-челюстно-лицевого хирурга повторный - source_sentence: (200) АЛТ (аланинаминотрансфераза) sentences: - Определение активности аланинаминотрансферазы в крови - Рентгенография грудного и поясничного отдела позвоночника - Анализ спектра органических кислот мочи методом газовой хроматографии с масс-спектрометрией - source_sentence: Витамин 25(OH)D2 и 25(OH)D3, раздельное определение (ВЭЖХ - МС/МС) sentences: - Исследование уровня 25-OH витамина Д в крови - Определение содержания антител к париетальным клеткам желудка - Прием (осмотр, консультация) врача-детского хирурга повторный --- # SentenceTransformer based on DeepPavlov/rubert-base-cased-sentence This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Витамин 25(OH)D2 и 25(OH)D3, раздельное определение (ВЭЖХ - МС/МС)', 'Исследование уровня 25-OH витамина Д в крови', 'Определение содержания антител к париетальным клеткам желудка', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 29,127 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | Ультразвуковое исследование органов малого таза
(комплексное)
| Ультразвуковое исследование органов малого таза | | МРТ головного мозга (исследование структуры головного мозга) | Магнитно-резонансная томография головного мозга с контрастированием | | Антитела к лямблиям (Lamblia intestinalis), суммарные | Определение антител классов A, M, G (IgM, IgA, IgG) к лямблиям в крови | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 11 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 11 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:-------:|:-----:|:-------------:| | 0.5488 | 500 | 0.8526 | | 1.0977 | 1000 | 0.3415 | | 1.6465 | 1500 | 0.2691 | | 2.1954 | 2000 | 0.218 | | 2.7442 | 2500 | 0.188 | | 3.2931 | 3000 | 0.1725 | | 3.8419 | 3500 | 0.1533 | | 4.3908 | 4000 | 0.1508 | | 4.9396 | 4500 | 0.1391 | | 5.4885 | 5000 | 0.1311 | | 6.0373 | 5500 | 0.1284 | | 6.5862 | 6000 | 0.122 | | 7.1350 | 6500 | 0.1163 | | 7.6839 | 7000 | 0.1102 | | 8.2327 | 7500 | 0.1068 | | 8.7816 | 8000 | 0.1046 | | 9.3304 | 8500 | 0.1018 | | 9.8793 | 9000 | 0.0987 | | 10.4281 | 9500 | 0.0983 | | 10.9769 | 10000 | 0.0971 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```