File size: 2,140 Bytes
e7b5842
9bf1447
 
e7b5842
 
9bf1447
e7b5842
 
9bf1447
e7b5842
 
 
9bf1447
e7b5842
 
 
 
 
9bf1447
 
e7b5842
 
 
 
 
 
270601a
 
 
 
e7b5842
 
 
 
 
9bf1447
e7b5842
9bf1447
e7b5842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- th
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Thai
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 th
      type: mozilla-foundation/common_voice_11_0
      config: th
      split: test
      args: th
    metrics:
    - name: Wer
      type: wer
      value: 29.169
    - name: Mer
      type: mer
      value: 27.781
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Thai

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 th dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3703
- Wer: 90.9836

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4319        | 2.0   | 1000 | 0.4203          | 97.5410 |
| 0.4003        | 4.0   | 2000 | 0.3933          | 95.0820 |
| 0.3844        | 6.0   | 3000 | 0.3800          | 93.0328 |
| 0.3876        | 8.0   | 4000 | 0.3729          | 91.8033 |
| 0.3899        | 10.0  | 5000 | 0.3703          | 90.9836 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2