File size: 2,173 Bytes
763071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
Inference main class.

Author: Marcely Zanon Boito, 2024
"""

from .CTC_model import mHubertForCTC

import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor
from transformers import HubertConfig

from datasets import load_dataset

fbk_test_id = 'FBK-MT/Speech-MASSIVE-test'
mhubert_id = 'utter-project/mHuBERT-147'

def load_asr_model():
	def init_config():
		config = HubertConfig.from_pretrained(mhubert_id)
		config.pad_token_id = processor.tokenizer.pad_token_id
		config.ctc_token_id = processor.tokenizer.convert_tokens_to_ids('[CTC]')
		config.vocab_size = len(processor.tokenizer)

		config.output_hidden_states = False
		config.add_interface = True
		config.num_interface_layers = 3
		return config

	# Load the ASR model
	tokenizer = Wav2Vec2CTCTokenizer('vocab.json', unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
	feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(mhubert_id)
	processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)

	config = init_config()
	model = mHubertForCTC.from_pretrained("naver/mHuBERT-147-ASR-fr", config=config)
	model.eval()
	return model, processor

def run_asr_inference(model, processor, example):
	audio = processor(example["array"], sampling_rate=example["sampling_rate"]).input_values[0]
	input_values = torch.tensor(audio).unsqueeze(0) 

	with torch.no_grad():
		logits = model(input_values).logits
	
	pred_ids = torch.argmax(logits, dim=-1)

	prediction = processor.batch_decode(pred_ids)[0].replace('[CTC]', "")
	return prediction

if __name__ == '__main__':

	# Load the dataset in streaming mode
	dataset = load_dataset(fbk_test_id, 'fr-FR', streaming=True)
	dataset = dataset['test']
	generator = iter(dataset)
	
	# load model
	model, processor = load_asr_model()
	print(model)

	# decode 10 examples from speech-MASSIVE
	num_examples= 10
	while num_examples >= 0:
		example = next(generator)
		
		prediction = run_inference(model, processor, example['audio'])
		
		gold_standard = example['utt']

		print("Gold standard:", gold_standard)
		print("Prediction:", prediction)
		print()
		num_examples-=1