update model card README.md
Browse files- .ipynb_checkpoints/all_results-checkpoint.json +22 -0
- README.md +62 -0
.ipynb_checkpoints/all_results-checkpoint.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_gen_len": 41.562881562881564,
|
3 |
+
"eval_loss": 1.869093418121338,
|
4 |
+
"eval_rouge1": 35.1506,
|
5 |
+
"eval_rouge2": 16.0888,
|
6 |
+
"eval_rougeL": 29.7007,
|
7 |
+
"eval_rougeLsum": 32.4251,
|
8 |
+
"eval_runtime": 261.235,
|
9 |
+
"eval_samples": 819,
|
10 |
+
"eval_samples_per_second": 3.135,
|
11 |
+
"eval_steps_per_second": 0.199,
|
12 |
+
"predict_gen_len": 41.73230769230769,
|
13 |
+
"predict_loss": 1.8758330345153809,
|
14 |
+
"predict_rouge1": 35.1974,
|
15 |
+
"predict_rouge2": 16.4972,
|
16 |
+
"predict_rougeL": 30.2616,
|
17 |
+
"predict_rougeLsum": 32.5539,
|
18 |
+
"predict_runtime": 419.3492,
|
19 |
+
"predict_samples": 1300,
|
20 |
+
"predict_samples_per_second": 3.1,
|
21 |
+
"predict_steps_per_second": 0.196
|
22 |
+
}
|
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- navjordj/SNL_summarization
|
6 |
+
model-index:
|
7 |
+
- name: t5-large-snl-2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# t5-large-snl-2
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [navjordj/t5-large-snl](https://huggingface.co/navjordj/t5-large-snl) on the navjordj/SNL_summarization dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- eval_loss: 1.8691
|
19 |
+
- eval_rouge1: 35.1506
|
20 |
+
- eval_rouge2: 16.0888
|
21 |
+
- eval_rougeL: 29.7007
|
22 |
+
- eval_rougeLsum: 32.4251
|
23 |
+
- eval_gen_len: 41.5629
|
24 |
+
- eval_runtime: 261.235
|
25 |
+
- eval_samples_per_second: 3.135
|
26 |
+
- eval_steps_per_second: 0.199
|
27 |
+
- step: 0
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 64
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 20.0
|
56 |
+
|
57 |
+
### Framework versions
|
58 |
+
|
59 |
+
- Transformers 4.27.0.dev0
|
60 |
+
- Pytorch 1.13.1
|
61 |
+
- Datasets 2.10.1
|
62 |
+
- Tokenizers 0.13.2
|