File size: 8,141 Bytes
9c13803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
)
from datasets import load_dataset, concatenate_datasets
from omegaconf import DictConfig, OmegaConf
import hydra
import wandb
import shutil
import os
from functools import partial
from pathlib import Path
from trl import (
    SFTTrainer,
    ModelConfig,
    get_quantization_config,
    get_kbit_device_map,
    get_peft_config,
    DataCollatorForCompletionOnlyLM,
)
from dotenv import load_dotenv
from peft import (
    get_peft_model,
    prepare_model_for_kbit_training,
    AutoPeftModelForSequenceClassification,
)

# from utils import add_metric_to_card

loaded = load_dotenv("../.env", override=True)

if not loaded:
    raise ValueError("Failed to load .env file")


def tokenize(example, tokenizer):
    ids = tokenizer.apply_chat_template([
        {"role": "user", "content": example["text"]},
        {"role": "assistant", "content": example["response"]},
    ])

    return {
        "input_ids": ids,
    }


@hydra.main(config_path="conf", config_name="q7b-4bit")
def main(cfg: DictConfig):

    cfg.time_start = "_".join(str(Path.cwd()).rsplit("/", 2)[-2:])

    if cfg.DEBUG:
        cfg.model_config.model_name_or_path = cfg.debug_model

    script_args = cfg.script_args
    training_args = TrainingArguments(**OmegaConf.to_container(cfg.training_args))
    model_config = ModelConfig(**OmegaConf.to_container(cfg.model_config))

    if training_args.process_index == 0:

        if cfg.eval_only or training_args.resume_from_checkpoint is not None:
            wandb_id = cfg.wandb_id
            resume = "must"
            config = None
        else:
            wandb_id = None
            resume = None
            config = OmegaConf.to_container(cfg)

        wandb.init(config=config, id=wandb_id, resume=resume)
        # copy current file to output, so it gets saved to hub
        shutil.copy(
            Path(__file__).resolve(),
            Path(training_args.output_dir) / Path(__file__).name,
        )

        shutil.copy(
            Path(__file__).resolve().parent / "utils.py",
            Path(training_args.output_dir) / "utils.py",
        )

    quantization_config = get_quantization_config(model_config)
    model_kwargs = dict(
        revision=model_config.model_revision,
        trust_remote_code=model_config.trust_remote_code,
        attn_implementation=model_config.attn_implementation,
        torch_dtype=model_config.torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
        cache_dir=os.environ["HF_HUB_CACHE"],
    )

    peft_config = get_peft_config(model_config)

    if training_args.use_liger_kernel:
        from liger_kernel.transformers import (
            apply_liger_kernel_to_qwen2,
            apply_liger_kernel_to_llama,
            apply_liger_kernel_to_mistral,
        )

        apply_liger_kernel_to_qwen2()
        apply_liger_kernel_to_llama()
        apply_liger_kernel_to_mistral()
    if cfg.eval_only:

        model = AutoPeftModelForSequenceClassification.from_pretrained(
            model_config.model_name_or_path,
            **model_kwargs,
            token=os.environ["HF_WRITE_PERSONAL"],
        )

        if cfg.merge_adapters:
            model = model.merge_and_unload()

    else:

        model = AutoModelForCausalLM.from_pretrained(
            model_config.model_name_or_path,
            **model_kwargs,
            token=os.environ["HF_GATED"],
        )

    tokenizer = AutoTokenizer.from_pretrained(
        model_config.model_name_or_path,
        use_fast=True,
        token=os.environ["HF_GATED"],
    )

    tokenizer.padding_side = "left"
    tokenizer.pad_token = cfg.pad_token


    if not cfg.eval_only and model_config.load_in_4bit:
        model = prepare_model_for_kbit_training(
            model,
            use_gradient_checkpointing=training_args.gradient_checkpointing,
            gradient_checkpointing_kwargs=training_args.gradient_checkpointing_kwargs,
        )

    elif not cfg.eval_only and training_args.gradient_checkpointing:
        model.enable_input_require_grads()

    if not cfg.eval_only:
        model = get_peft_model(model, peft_config)

    with training_args.main_process_first():
        ds = load_dataset(
            script_args.dataset_name,
            script_args.config,
            token=os.environ["HF_WRITE_PERSONAL"],
        )

# hack to downsample english squad
        # ds["train"] = concatenate_datasets(
        #     [
        #         ds["train"].select(range(0, 45000)),
        #         ds["train"].select(range(98596, len(ds["train"]))),
        #                                  ])

        if cfg.DEBUG:
            ds[cfg.train_split_name] = (
                ds[cfg.train_split_name].shuffle().select(range(100))
            )
            # ds[cfg.val_split_name] = ds[cfg.val_split_name].shuffle().select(range(100))

        # if not cfg.eval_only:
            # ds[cfg.val_split_name] = ds[cfg.val_split_name].shuffle().select(range(500))

        ds = ds.map(tokenize, fn_kwargs={"tokenizer": tokenizer}, num_proc=cfg.num_proc, remove_columns=ds["train"].column_names)

    collator = DataCollatorForCompletionOnlyLM(
        tokenizer=tokenizer,
        mlm=False,
        pad_to_multiple_of=16,
        response_template=cfg.response_template_ids
    )

    if training_args.process_index == 0:
        group = os.environ["WANDB_RUN_GROUP"]
        training_args.hub_model_id = f"nbroad/nbroad-odesia-{group}-{wandb.run.id}"
        training_args.hub_token = os.environ["HF_WRITE_PERSONAL"]

    prefix = ""

    if cfg.eval_only:
        if "awq" in model_config.model_name_or_path.lower():
            prefix = "awq_"
        if model_config.load_in_4bit:
            prefix += "int4_"
        elif model_config.torch_dtype == "bfloat16":
            prefix += "bf16_"
        elif model_config.torch_dtype == "float16":
            prefix += "fp16_"

    trainer = SFTTrainer(
        model=model,
        args=training_args,
        train_dataset=ds["train"],
        eval_dataset=(
            ds[cfg.val_split_name] if training_args.eval_strategy != "no" else None
        ),
        processing_class=tokenizer,
        data_collator=collator,
        # compute_metrics=partial(compute_metrics, prefix=prefix),
    )

    if training_args.process_index == 0:

        trainer.model.config.update(
            {
                "wandb_id": wandb.run.id,
                "fold": cfg.fold,
                "group": group,
                "dataset": script_args.dataset_name,
            }
        )

    if not cfg.eval_only:
        if training_args.resume_from_checkpoint is not None:
            os.chdir(Path(training_args.resume_from_checkpoint).parent)
        trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
    else:
        metrics = trainer.evaluate()

        # if training_args.process_index == 0:
            # met = [x for x in metrics if "accuracy" in x][0]

            # result = add_metric_to_card(
            #     repo=training_args.hub_model_id,
            #     metrics_pretty_name=met,
            #     metrics_value=metrics[met],
            #     dataset_id=script_args.dataset_name,
            #     dataset_split=cfg.val_split_name,
            #     model_path=model_config.model_name_or_path,
            #     model_dtype=model_config.torch_dtype,
            #     token=os.environ["HF_WRITE_PERSONAL"],
            # )
            # print(result)

    if not cfg.eval_only:
        # Save and push to hub
        trainer.save_model(training_args.output_dir)
        if training_args.push_to_hub:
            trainer.push_to_hub(
                dataset_name=script_args.dataset_name,
                model_name=model_config.model_name_or_path,
                tags=cfg.hub_repo_tags,
            )

    if training_args.process_index == 0:
        wandb.finish()


if __name__ == "__main__":
    main()