--- license: mit tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy base_model: microsoft/deberta-v3-base model-index: - name: yes_no_qna_deberta_model results: - task: type: text-classification name: Text Classification dataset: name: super_glue type: super_glue config: boolq split: train args: boolq metrics: - type: accuracy value: 0.8507645259938837 name: Accuracy --- # yes_no_qna_deberta_model This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5570 - Accuracy: 0.8508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.583 | 1.0 | 590 | 0.4086 | 0.8251 | | 0.348 | 2.0 | 1180 | 0.4170 | 0.8465 | | 0.2183 | 3.0 | 1770 | 0.5570 | 0.8508 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2