File size: 1,367 Bytes
33d9861 c07a01c 2be506c c07a01c 2be506c 774231b 2be506c 3e487d2 c07a01c 2be506c c07a01c 33d9861 774231b 33d9861 774231b a825fd7 33d9861 774231b 33d9861 6f2d2c0 33d9861 774231b 33d9861 774231b c07a01c 774231b c07a01c 774231b 33d9861 2be506c 774231b 33d9861 774231b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-CV17.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
metrics:
- name: Wer
type: wer
value: 0.6538388264431321
- name: Bleu
type: bleu
value: 0.14202013774436864
---
# wav2vec2-mms-1b-CV17.0
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
Adapters for several languages were trained.
## Intended uses & limitations
Speech-to-text transciption of Malayalam, Tamil, Telugu, and Yoruba.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|