File size: 1,367 Bytes
33d9861
c07a01c
 
2be506c
c07a01c
 
2be506c
 
 
 
 
774231b
 
2be506c
 
3e487d2
c07a01c
2be506c
 
 
 
c07a01c
 
 
 
 
 
33d9861
 
 
774231b
33d9861
774231b
a825fd7
33d9861
774231b
33d9861
6f2d2c0
33d9861
774231b
33d9861
774231b
c07a01c
774231b
 
 
 
 
 
 
 
c07a01c
774231b
33d9861
2be506c
774231b
33d9861
774231b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-CV17.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
    metrics:
    - name: Wer
      type: wer
      value: 0.6538388264431321
    - name: Bleu
      type: bleu
      value: 0.14202013774436864
---


# wav2vec2-mms-1b-CV17.0

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset.
Adapters for several languages were trained.

## Intended uses & limitations

Speech-to-text transciption of Malayalam, Tamil, Telugu, and Yoruba.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1