Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +544 -0
- added_tokens.json +3 -0
- bpe.codes +0 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +9 -0
- tokenizer_config.json +54 -0
- trainer_state.json +1281 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:362208
|
10 |
+
- loss:ContrastiveLoss
|
11 |
+
base_model: vinai/phobert-base-v2
|
12 |
+
datasets: []
|
13 |
+
widget:
|
14 |
+
- source_sentence: vùng khí_hậu nóng ẩm ghi_nhận sự tồn_tại của Virus SARS-CoV -2
|
15 |
+
.
|
16 |
+
sentences:
|
17 |
+
- vùng khí_hậu nóng ẩm ghi_nhận sự tồn_tại của Virus SARS-CoV -2 .
|
18 |
+
- Chế_độ ăn_uống nghỉ_ngơi như_thế_nào là hợp_lý ?
|
19 |
+
- Và bé đang có tình_trạng bị đọng cặn nước_tiểu ở đầu bộ sinh_dục ( bé trai ) .
|
20 |
+
- source_sentence: Khoan xương và chèn vào hai bên hai bong_bóng được gọi là đệm xương
|
21 |
+
.
|
22 |
+
sentences:
|
23 |
+
- Khoan xương và chèn vào hai bên hai bong_bóng được gọi là đệm xương .
|
24 |
+
- 3 hôm_nay bé đi phân chủ_yếu là nhầy có bọt rồi nước lẫn hoa_cà_hoa_cải , thi_thoảng
|
25 |
+
phân có màu xanh đậm .
|
26 |
+
- Sau khi chẩn_đoán , bác_sĩ khuyên anh Khánh nên sớm điều_trị kịp_thời để tránh
|
27 |
+
nhiều biến_chứng .
|
28 |
+
- source_sentence: Những phụ_nữ có tiền_sử bệnh như trên chính là những đối_tượng
|
29 |
+
nguy_cơ của tình_trạng tắc ống dẫn trứng .
|
30 |
+
sentences:
|
31 |
+
- 'Dùng các thiết_bị hỗ_trợ quá_trình di_chuyển đồng_thời giúp cải_thiện chức_năng
|
32 |
+
của các khớp như :'
|
33 |
+
- Những phụ_nữ có tiền_sử bệnh như trên chính là những đối_tượng nguy_cơ của tình_trạng
|
34 |
+
tắc ống dẫn trứng .
|
35 |
+
- Trong các nguyên_nhân sau đây , đâu là các nguyên_nhân khách_quan , không đến
|
36 |
+
từ mẹ và thai_nhi ?
|
37 |
+
- source_sentence: Bé nhà con nay được 1 tháng 23 ngày .
|
38 |
+
sentences:
|
39 |
+
- 'Vú phải : - bất đối_xứng ở vùng dưới ( kích_thước :'
|
40 |
+
- Thưa bác_sĩ tôi 18 tuổi , bị sưng chân răng , nhức tai , nhức đầu với có kêu tiếng
|
41 |
+
trong quai_hàm .
|
42 |
+
- Bé nhà con nay được 1 tháng 23 ngày .
|
43 |
+
- source_sentence: Tuy_nhiên , nếu bệnh không tự lành và vẫn tiếp_tục chảy_máu , cần
|
44 |
+
phải sử_dụng các liệu_pháp cầm máu để bù lại lượng máu đã mất .
|
45 |
+
sentences:
|
46 |
+
- Nguyễn_Thị_Thanh_Tuyền ( 1995 ) .
|
47 |
+
- Bệnh_viện Bệnh Nhiệt_đới Trung_ương cơ_sở Kim_Chung là bệnh_viện khám_chữa bệnh
|
48 |
+
đa_khoa phục_vụ cho người_dân trong cả nước .
|
49 |
+
- 'Một_số yếu_tố làm tăng nguy_cơ mắc bệnh như : Yếu_tố nội_tiết : bệnh thường gặp
|
50 |
+
ở phụ_nữ chậm có kinh và sớm mãn_kinh .'
|
51 |
+
pipeline_tag: sentence-similarity
|
52 |
+
---
|
53 |
+
|
54 |
+
# SentenceTransformer based on vinai/phobert-base-v2
|
55 |
+
|
56 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
57 |
+
|
58 |
+
## Model Details
|
59 |
+
|
60 |
+
### Model Description
|
61 |
+
- **Model Type:** Sentence Transformer
|
62 |
+
- **Base model:** [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) <!-- at revision 2b51e367d92093c9688112098510e6a58bab67cd -->
|
63 |
+
- **Maximum Sequence Length:** 256 tokens
|
64 |
+
- **Output Dimensionality:** 768 tokens
|
65 |
+
- **Similarity Function:** Cosine Similarity
|
66 |
+
<!-- - **Training Dataset:** Unknown -->
|
67 |
+
<!-- - **Language:** Unknown -->
|
68 |
+
<!-- - **License:** Unknown -->
|
69 |
+
|
70 |
+
### Model Sources
|
71 |
+
|
72 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
73 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
74 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
75 |
+
|
76 |
+
### Full Model Architecture
|
77 |
+
|
78 |
+
```
|
79 |
+
SentenceTransformer(
|
80 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
81 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
82 |
+
)
|
83 |
+
```
|
84 |
+
|
85 |
+
## Usage
|
86 |
+
|
87 |
+
### Direct Usage (Sentence Transformers)
|
88 |
+
|
89 |
+
First install the Sentence Transformers library:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install -U sentence-transformers
|
93 |
+
```
|
94 |
+
|
95 |
+
Then you can load this model and run inference.
|
96 |
+
```python
|
97 |
+
from sentence_transformers import SentenceTransformer
|
98 |
+
|
99 |
+
# Download from the 🤗 Hub
|
100 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
101 |
+
# Run inference
|
102 |
+
sentences = [
|
103 |
+
'Tuy_nhiên , nếu bệnh không tự lành và vẫn tiếp_tục chảy_máu , cần phải sử_dụng các liệu_pháp cầm máu để bù lại lượng máu đã mất .',
|
104 |
+
'Một_số yếu_tố làm tăng nguy_cơ mắc bệnh như : Yếu_tố nội_tiết : bệnh thường gặp ở phụ_nữ chậm có kinh và sớm mãn_kinh .',
|
105 |
+
'Nguyễn_Thị_Thanh_Tuyền ( 1995 ) .',
|
106 |
+
]
|
107 |
+
embeddings = model.encode(sentences)
|
108 |
+
print(embeddings.shape)
|
109 |
+
# [3, 768]
|
110 |
+
|
111 |
+
# Get the similarity scores for the embeddings
|
112 |
+
similarities = model.similarity(embeddings, embeddings)
|
113 |
+
print(similarities.shape)
|
114 |
+
# [3, 3]
|
115 |
+
```
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Direct Usage (Transformers)
|
119 |
+
|
120 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
121 |
+
|
122 |
+
</details>
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
### Downstream Usage (Sentence Transformers)
|
127 |
+
|
128 |
+
You can finetune this model on your own dataset.
|
129 |
+
|
130 |
+
<details><summary>Click to expand</summary>
|
131 |
+
|
132 |
+
</details>
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Out-of-Scope Use
|
137 |
+
|
138 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
<!--
|
142 |
+
## Bias, Risks and Limitations
|
143 |
+
|
144 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
145 |
+
-->
|
146 |
+
|
147 |
+
<!--
|
148 |
+
### Recommendations
|
149 |
+
|
150 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
151 |
+
-->
|
152 |
+
|
153 |
+
## Training Details
|
154 |
+
|
155 |
+
### Training Dataset
|
156 |
+
|
157 |
+
#### Unnamed Dataset
|
158 |
+
|
159 |
+
|
160 |
+
* Size: 362,208 training samples
|
161 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
162 |
+
* Approximate statistics based on the first 1000 samples:
|
163 |
+
| | sentence_0 | sentence_1 | label |
|
164 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
165 |
+
| type | string | string | float |
|
166 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 22.64 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 23.25 tokens</li><li>max: 222 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.82</li><li>max: 1.0</li></ul> |
|
167 |
+
* Samples:
|
168 |
+
| sentence_0 | sentence_1 | label |
|
169 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
170 |
+
| <code>Hiệu_lực của vaccine AstraZeneca ra sao ?</code> | <code>Hiệu_lực của vaccine AstraZeneca ra sao ?</code> | <code>1.0</code> |
|
171 |
+
| <code>Gần đây , tôi có quen một bạn gái , mỗi lần ngồi gần nhau có cử_chỉ thân_mật thì tôi gần như không kìm chế được có_thể nói là giống như hiện_tượng xuất_tinh sớm .</code> | <code>Chụp CT scanner sọ não : là hình_ảnh tốt nhất để đánh_giá tổn_thương não vì có_thể hiển_thị mô não hoặc xuất_huyết não hoặc nhũn_não .</code> | <code>0.6540138125419617</code> |
|
172 |
+
| <code>Sốt siêu_vi sau quan_hệ tình_dục không an_toàn có phải đã nhiễm HIV không ?</code> | <code>Sốt siêu_vi sau quan_hệ tình_dục không an_toàn có phải đã nhiễm HIV không ?</code> | <code>1.0</code> |
|
173 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
174 |
+
```json
|
175 |
+
{
|
176 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
177 |
+
"margin": 0.5,
|
178 |
+
"size_average": true
|
179 |
+
}
|
180 |
+
```
|
181 |
+
|
182 |
+
### Training Hyperparameters
|
183 |
+
#### Non-Default Hyperparameters
|
184 |
+
|
185 |
+
- `per_device_train_batch_size`: 16
|
186 |
+
- `per_device_eval_batch_size`: 16
|
187 |
+
- `num_train_epochs`: 4
|
188 |
+
- `multi_dataset_batch_sampler`: round_robin
|
189 |
+
|
190 |
+
#### All Hyperparameters
|
191 |
+
<details><summary>Click to expand</summary>
|
192 |
+
|
193 |
+
- `overwrite_output_dir`: False
|
194 |
+
- `do_predict`: False
|
195 |
+
- `prediction_loss_only`: True
|
196 |
+
- `per_device_train_batch_size`: 16
|
197 |
+
- `per_device_eval_batch_size`: 16
|
198 |
+
- `per_gpu_train_batch_size`: None
|
199 |
+
- `per_gpu_eval_batch_size`: None
|
200 |
+
- `gradient_accumulation_steps`: 1
|
201 |
+
- `eval_accumulation_steps`: None
|
202 |
+
- `learning_rate`: 5e-05
|
203 |
+
- `weight_decay`: 0.0
|
204 |
+
- `adam_beta1`: 0.9
|
205 |
+
- `adam_beta2`: 0.999
|
206 |
+
- `adam_epsilon`: 1e-08
|
207 |
+
- `max_grad_norm`: 1
|
208 |
+
- `num_train_epochs`: 4
|
209 |
+
- `max_steps`: -1
|
210 |
+
- `lr_scheduler_type`: linear
|
211 |
+
- `lr_scheduler_kwargs`: {}
|
212 |
+
- `warmup_ratio`: 0.0
|
213 |
+
- `warmup_steps`: 0
|
214 |
+
- `log_level`: passive
|
215 |
+
- `log_level_replica`: warning
|
216 |
+
- `log_on_each_node`: True
|
217 |
+
- `logging_nan_inf_filter`: True
|
218 |
+
- `save_safetensors`: True
|
219 |
+
- `save_on_each_node`: False
|
220 |
+
- `save_only_model`: False
|
221 |
+
- `no_cuda`: False
|
222 |
+
- `use_cpu`: False
|
223 |
+
- `use_mps_device`: False
|
224 |
+
- `seed`: 42
|
225 |
+
- `data_seed`: None
|
226 |
+
- `jit_mode_eval`: False
|
227 |
+
- `use_ipex`: False
|
228 |
+
- `bf16`: False
|
229 |
+
- `fp16`: False
|
230 |
+
- `fp16_opt_level`: O1
|
231 |
+
- `half_precision_backend`: auto
|
232 |
+
- `bf16_full_eval`: False
|
233 |
+
- `fp16_full_eval`: False
|
234 |
+
- `tf32`: None
|
235 |
+
- `local_rank`: 0
|
236 |
+
- `ddp_backend`: None
|
237 |
+
- `tpu_num_cores`: None
|
238 |
+
- `tpu_metrics_debug`: False
|
239 |
+
- `debug`: []
|
240 |
+
- `dataloader_drop_last`: False
|
241 |
+
- `dataloader_num_workers`: 0
|
242 |
+
- `dataloader_prefetch_factor`: None
|
243 |
+
- `past_index`: -1
|
244 |
+
- `disable_tqdm`: False
|
245 |
+
- `remove_unused_columns`: True
|
246 |
+
- `label_names`: None
|
247 |
+
- `load_best_model_at_end`: False
|
248 |
+
- `ignore_data_skip`: False
|
249 |
+
- `fsdp`: []
|
250 |
+
- `fsdp_min_num_params`: 0
|
251 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
252 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
253 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
254 |
+
- `deepspeed`: None
|
255 |
+
- `label_smoothing_factor`: 0.0
|
256 |
+
- `optim`: adamw_torch
|
257 |
+
- `optim_args`: None
|
258 |
+
- `adafactor`: False
|
259 |
+
- `group_by_length`: False
|
260 |
+
- `length_column_name`: length
|
261 |
+
- `ddp_find_unused_parameters`: None
|
262 |
+
- `ddp_bucket_cap_mb`: None
|
263 |
+
- `ddp_broadcast_buffers`: False
|
264 |
+
- `dataloader_pin_memory`: True
|
265 |
+
- `dataloader_persistent_workers`: False
|
266 |
+
- `skip_memory_metrics`: True
|
267 |
+
- `use_legacy_prediction_loop`: False
|
268 |
+
- `push_to_hub`: False
|
269 |
+
- `resume_from_checkpoint`: None
|
270 |
+
- `hub_model_id`: None
|
271 |
+
- `hub_strategy`: every_save
|
272 |
+
- `hub_private_repo`: False
|
273 |
+
- `hub_always_push`: False
|
274 |
+
- `gradient_checkpointing`: False
|
275 |
+
- `gradient_checkpointing_kwargs`: None
|
276 |
+
- `include_inputs_for_metrics`: False
|
277 |
+
- `fp16_backend`: auto
|
278 |
+
- `push_to_hub_model_id`: None
|
279 |
+
- `push_to_hub_organization`: None
|
280 |
+
- `mp_parameters`:
|
281 |
+
- `auto_find_batch_size`: False
|
282 |
+
- `full_determinism`: False
|
283 |
+
- `torchdynamo`: None
|
284 |
+
- `ray_scope`: last
|
285 |
+
- `ddp_timeout`: 1800
|
286 |
+
- `torch_compile`: False
|
287 |
+
- `torch_compile_backend`: None
|
288 |
+
- `torch_compile_mode`: None
|
289 |
+
- `dispatch_batches`: None
|
290 |
+
- `split_batches`: None
|
291 |
+
- `include_tokens_per_second`: False
|
292 |
+
- `include_num_input_tokens_seen`: False
|
293 |
+
- `neftune_noise_alpha`: None
|
294 |
+
- `optim_target_modules`: None
|
295 |
+
- `batch_sampler`: batch_sampler
|
296 |
+
- `multi_dataset_batch_sampler`: round_robin
|
297 |
+
|
298 |
+
</details>
|
299 |
+
|
300 |
+
### Training Logs
|
301 |
+
<details><summary>Click to expand</summary>
|
302 |
+
|
303 |
+
| Epoch | Step | Training Loss |
|
304 |
+
|:------:|:-----:|:-------------:|
|
305 |
+
| 0.0221 | 500 | 0.0168 |
|
306 |
+
| 0.0442 | 1000 | 0.0139 |
|
307 |
+
| 0.0663 | 1500 | 0.0142 |
|
308 |
+
| 0.0883 | 2000 | 0.0139 |
|
309 |
+
| 0.1104 | 2500 | 0.0137 |
|
310 |
+
| 0.1325 | 3000 | 0.0139 |
|
311 |
+
| 0.1546 | 3500 | 0.0137 |
|
312 |
+
| 0.1767 | 4000 | 0.0139 |
|
313 |
+
| 0.1988 | 4500 | 0.0136 |
|
314 |
+
| 0.2209 | 5000 | 0.0135 |
|
315 |
+
| 0.2430 | 5500 | 0.0137 |
|
316 |
+
| 0.2650 | 6000 | 0.0138 |
|
317 |
+
| 0.2871 | 6500 | 0.0136 |
|
318 |
+
| 0.3092 | 7000 | 0.0137 |
|
319 |
+
| 0.3313 | 7500 | 0.0138 |
|
320 |
+
| 0.3534 | 8000 | 0.0135 |
|
321 |
+
| 0.3755 | 8500 | 0.0138 |
|
322 |
+
| 0.3976 | 9000 | 0.0138 |
|
323 |
+
| 0.4196 | 9500 | 0.0141 |
|
324 |
+
| 0.4417 | 10000 | 0.0139 |
|
325 |
+
| 0.4638 | 10500 | 0.0139 |
|
326 |
+
| 0.4859 | 11000 | 0.0138 |
|
327 |
+
| 0.5080 | 11500 | 0.0141 |
|
328 |
+
| 0.5301 | 12000 | 0.0138 |
|
329 |
+
| 0.5522 | 12500 | 0.0138 |
|
330 |
+
| 0.5743 | 13000 | 0.0138 |
|
331 |
+
| 0.5963 | 13500 | 0.0138 |
|
332 |
+
| 0.6184 | 14000 | 0.0136 |
|
333 |
+
| 0.6405 | 14500 | 0.0139 |
|
334 |
+
| 0.6626 | 15000 | 0.0151 |
|
335 |
+
| 0.6847 | 15500 | 0.019 |
|
336 |
+
| 0.7068 | 16000 | 0.0184 |
|
337 |
+
| 0.7289 | 16500 | 0.018 |
|
338 |
+
| 0.7509 | 17000 | 0.0163 |
|
339 |
+
| 0.7730 | 17500 | 0.0164 |
|
340 |
+
| 0.7951 | 18000 | 0.0158 |
|
341 |
+
| 0.8172 | 18500 | 0.0155 |
|
342 |
+
| 0.8393 | 19000 | 0.0151 |
|
343 |
+
| 0.8614 | 19500 | 0.0151 |
|
344 |
+
| 0.8835 | 20000 | 0.0152 |
|
345 |
+
| 0.9056 | 20500 | 0.0152 |
|
346 |
+
| 0.9276 | 21000 | 0.0151 |
|
347 |
+
| 0.9497 | 21500 | 0.0148 |
|
348 |
+
| 0.9718 | 22000 | 0.015 |
|
349 |
+
| 0.9939 | 22500 | 0.0147 |
|
350 |
+
| 1.0160 | 23000 | 0.0149 |
|
351 |
+
| 1.0381 | 23500 | 0.0151 |
|
352 |
+
| 1.0602 | 24000 | 0.015 |
|
353 |
+
| 1.0823 | 24500 | 0.0148 |
|
354 |
+
| 1.1043 | 25000 | 0.0147 |
|
355 |
+
| 1.1264 | 25500 | 0.0149 |
|
356 |
+
| 1.1485 | 26000 | 0.0147 |
|
357 |
+
| 1.1706 | 26500 | 0.015 |
|
358 |
+
| 1.1927 | 27000 | 0.0146 |
|
359 |
+
| 1.2148 | 27500 | 0.0145 |
|
360 |
+
| 1.2369 | 28000 | 0.0147 |
|
361 |
+
| 1.2589 | 28500 | 0.0149 |
|
362 |
+
| 1.2810 | 29000 | 0.0147 |
|
363 |
+
| 1.3031 | 29500 | 0.0144 |
|
364 |
+
| 1.3252 | 30000 | 0.0147 |
|
365 |
+
| 1.3473 | 30500 | 0.0147 |
|
366 |
+
| 1.3694 | 31000 | 0.0145 |
|
367 |
+
| 1.3915 | 31500 | 0.0149 |
|
368 |
+
| 1.4136 | 32000 | 0.0147 |
|
369 |
+
| 1.4356 | 32500 | 0.0148 |
|
370 |
+
| 1.4577 | 33000 | 0.0148 |
|
371 |
+
| 1.4798 | 33500 | 0.0145 |
|
372 |
+
| 1.5019 | 34000 | 0.0149 |
|
373 |
+
| 1.5240 | 34500 | 0.0147 |
|
374 |
+
| 1.5461 | 35000 | 0.0146 |
|
375 |
+
| 1.5682 | 35500 | 0.0144 |
|
376 |
+
| 1.5902 | 36000 | 0.0146 |
|
377 |
+
| 1.6123 | 36500 | 0.0143 |
|
378 |
+
| 1.6344 | 37000 | 0.0145 |
|
379 |
+
| 1.6565 | 37500 | 0.0145 |
|
380 |
+
| 1.6786 | 38000 | 0.0146 |
|
381 |
+
| 1.7007 | 38500 | 0.0143 |
|
382 |
+
| 1.7228 | 39000 | 0.0149 |
|
383 |
+
| 1.7449 | 39500 | 0.0143 |
|
384 |
+
| 1.7669 | 40000 | 0.0146 |
|
385 |
+
| 1.7890 | 40500 | 0.0146 |
|
386 |
+
| 1.8111 | 41000 | 0.0146 |
|
387 |
+
| 1.8332 | 41500 | 0.0142 |
|
388 |
+
| 1.8553 | 42000 | 0.0144 |
|
389 |
+
| 1.8774 | 42500 | 0.0146 |
|
390 |
+
| 1.8995 | 43000 | 0.0147 |
|
391 |
+
| 1.9215 | 43500 | 0.0144 |
|
392 |
+
| 1.9436 | 44000 | 0.0145 |
|
393 |
+
| 1.9657 | 44500 | 0.0143 |
|
394 |
+
| 1.9878 | 45000 | 0.0146 |
|
395 |
+
| 2.0099 | 45500 | 0.0143 |
|
396 |
+
| 2.0320 | 46000 | 0.0147 |
|
397 |
+
| 2.0541 | 46500 | 0.0146 |
|
398 |
+
| 2.0762 | 47000 | 0.0144 |
|
399 |
+
| 2.0982 | 47500 | 0.0144 |
|
400 |
+
| 2.1203 | 48000 | 0.0144 |
|
401 |
+
| 2.1424 | 48500 | 0.0145 |
|
402 |
+
| 2.1645 | 49000 | 0.0144 |
|
403 |
+
| 2.1866 | 49500 | 0.0144 |
|
404 |
+
| 2.2087 | 50000 | 0.0141 |
|
405 |
+
| 2.2308 | 50500 | 0.0142 |
|
406 |
+
| 2.2528 | 51000 | 0.0145 |
|
407 |
+
| 2.2749 | 51500 | 0.0143 |
|
408 |
+
| 2.2970 | 52000 | 0.0141 |
|
409 |
+
| 2.3191 | 52500 | 0.0144 |
|
410 |
+
| 2.3412 | 53000 | 0.0143 |
|
411 |
+
| 2.3633 | 53500 | 0.0144 |
|
412 |
+
| 2.3854 | 54000 | 0.0144 |
|
413 |
+
| 2.4075 | 54500 | 0.0144 |
|
414 |
+
| 2.4295 | 55000 | 0.0145 |
|
415 |
+
| 2.4516 | 55500 | 0.0145 |
|
416 |
+
| 2.4737 | 56000 | 0.0144 |
|
417 |
+
| 2.4958 | 56500 | 0.0147 |
|
418 |
+
| 2.5179 | 57000 | 0.0145 |
|
419 |
+
| 2.5400 | 57500 | 0.0144 |
|
420 |
+
| 2.5621 | 58000 | 0.0143 |
|
421 |
+
| 2.5842 | 58500 | 0.0144 |
|
422 |
+
| 2.6062 | 59000 | 0.0143 |
|
423 |
+
| 2.6283 | 59500 | 0.0142 |
|
424 |
+
| 2.6504 | 60000 | 0.0143 |
|
425 |
+
| 2.6725 | 60500 | 0.0143 |
|
426 |
+
| 2.6946 | 61000 | 0.0143 |
|
427 |
+
| 2.7167 | 61500 | 0.0144 |
|
428 |
+
| 2.7388 | 62000 | 0.0143 |
|
429 |
+
| 2.7608 | 62500 | 0.0143 |
|
430 |
+
| 2.7829 | 63000 | 0.0146 |
|
431 |
+
| 2.8050 | 63500 | 0.0144 |
|
432 |
+
| 2.8271 | 64000 | 0.0141 |
|
433 |
+
| 2.8492 | 64500 | 0.0142 |
|
434 |
+
| 2.8713 | 65000 | 0.0143 |
|
435 |
+
| 2.8934 | 65500 | 0.0146 |
|
436 |
+
| 2.9155 | 66000 | 0.0143 |
|
437 |
+
| 2.9375 | 66500 | 0.0143 |
|
438 |
+
| 2.9596 | 67000 | 0.0141 |
|
439 |
+
| 2.9817 | 67500 | 0.0144 |
|
440 |
+
| 3.0038 | 68000 | 0.0143 |
|
441 |
+
| 3.0259 | 68500 | 0.0145 |
|
442 |
+
| 3.0480 | 69000 | 0.0142 |
|
443 |
+
| 3.0701 | 69500 | 0.0145 |
|
444 |
+
| 3.0921 | 70000 | 0.0142 |
|
445 |
+
| 3.1142 | 70500 | 0.0143 |
|
446 |
+
| 3.1363 | 71000 | 0.0142 |
|
447 |
+
| 3.1584 | 71500 | 0.0143 |
|
448 |
+
| 3.1805 | 72000 | 0.0143 |
|
449 |
+
| 3.2026 | 72500 | 0.014 |
|
450 |
+
| 3.2247 | 73000 | 0.0141 |
|
451 |
+
| 3.2468 | 73500 | 0.0142 |
|
452 |
+
| 3.2688 | 74000 | 0.0143 |
|
453 |
+
| 3.2909 | 74500 | 0.0141 |
|
454 |
+
| 3.3130 | 75000 | 0.0141 |
|
455 |
+
| 3.3351 | 75500 | 0.0143 |
|
456 |
+
| 3.3572 | 76000 | 0.0141 |
|
457 |
+
| 3.3793 | 76500 | 0.0143 |
|
458 |
+
| 3.4014 | 77000 | 0.0143 |
|
459 |
+
| 3.4234 | 77500 | 0.0146 |
|
460 |
+
| 3.4455 | 78000 | 0.0144 |
|
461 |
+
| 3.4676 | 78500 | 0.0143 |
|
462 |
+
| 3.4897 | 79000 | 0.0144 |
|
463 |
+
| 3.5118 | 79500 | 0.0145 |
|
464 |
+
| 3.5339 | 80000 | 0.0142 |
|
465 |
+
| 3.5560 | 80500 | 0.0144 |
|
466 |
+
| 3.5781 | 81000 | 0.0143 |
|
467 |
+
| 3.6001 | 81500 | 0.0142 |
|
468 |
+
| 3.6222 | 82000 | 0.0142 |
|
469 |
+
| 3.6443 | 82500 | 0.0142 |
|
470 |
+
| 3.6664 | 83000 | 0.014 |
|
471 |
+
| 3.6885 | 83500 | 0.0144 |
|
472 |
+
| 3.7106 | 84000 | 0.0141 |
|
473 |
+
| 3.7327 | 84500 | 0.0143 |
|
474 |
+
| 3.7547 | 85000 | 0.014 |
|
475 |
+
| 3.7768 | 85500 | 0.0146 |
|
476 |
+
| 3.7989 | 86000 | 0.0143 |
|
477 |
+
| 3.8210 | 86500 | 0.0142 |
|
478 |
+
| 3.8431 | 87000 | 0.0139 |
|
479 |
+
| 3.8652 | 87500 | 0.0143 |
|
480 |
+
| 3.8873 | 88000 | 0.0144 |
|
481 |
+
| 3.9094 | 88500 | 0.0143 |
|
482 |
+
| 3.9314 | 89000 | 0.0142 |
|
483 |
+
| 3.9535 | 89500 | 0.0142 |
|
484 |
+
| 3.9756 | 90000 | 0.0142 |
|
485 |
+
|
486 |
+
</details>
|
487 |
+
|
488 |
+
### Framework Versions
|
489 |
+
- Python: 3.10.13
|
490 |
+
- Sentence Transformers: 3.1.0.dev0
|
491 |
+
- Transformers: 4.39.3
|
492 |
+
- PyTorch: 2.1.2
|
493 |
+
- Accelerate: 0.29.3
|
494 |
+
- Datasets: 2.18.0
|
495 |
+
- Tokenizers: 0.15.2
|
496 |
+
|
497 |
+
## Citation
|
498 |
+
|
499 |
+
### BibTeX
|
500 |
+
|
501 |
+
#### Sentence Transformers
|
502 |
+
```bibtex
|
503 |
+
@inproceedings{reimers-2019-sentence-bert,
|
504 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
505 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
506 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
507 |
+
month = "11",
|
508 |
+
year = "2019",
|
509 |
+
publisher = "Association for Computational Linguistics",
|
510 |
+
url = "https://arxiv.org/abs/1908.10084",
|
511 |
+
}
|
512 |
+
```
|
513 |
+
|
514 |
+
#### ContrastiveLoss
|
515 |
+
```bibtex
|
516 |
+
@inproceedings{hadsell2006dimensionality,
|
517 |
+
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
518 |
+
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
519 |
+
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
520 |
+
year={2006},
|
521 |
+
volume={2},
|
522 |
+
number={},
|
523 |
+
pages={1735-1742},
|
524 |
+
doi={10.1109/CVPR.2006.100}
|
525 |
+
}
|
526 |
+
```
|
527 |
+
|
528 |
+
<!--
|
529 |
+
## Glossary
|
530 |
+
|
531 |
+
*Clearly define terms in order to be accessible across audiences.*
|
532 |
+
-->
|
533 |
+
|
534 |
+
<!--
|
535 |
+
## Model Card Authors
|
536 |
+
|
537 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
538 |
+
-->
|
539 |
+
|
540 |
+
<!--
|
541 |
+
## Model Card Contact
|
542 |
+
|
543 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
544 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<mask>": 64000
|
3 |
+
}
|
bpe.codes
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "vinai/phobert-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 258,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"tokenizer_class": "PhobertTokenizer",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.39.3",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 64001
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0.dev0",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.1.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9d4a6db7578a9c2f29c471ecba2540b8522a455faff430999a8dadf897826b8
|
3 |
+
size 540015464
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3d341f133c19d9a676f147da1a70460996cc9db7d9616a4b897900a4a508c2d
|
3 |
+
size 1080152634
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0406bf623d5d04576a8b9be491c9c293d43e339baa4b502fdf4e9218b981bc8
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf1f98f00221cad9904202f2abd85131a25f85b16287bb2dab3e092ee2ace761
|
3 |
+
size 1064
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": "<mask>",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"64000": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 256,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "PhobertTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.97561622051418,
|
5 |
+
"eval_steps": 0,
|
6 |
+
"global_step": 90000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 0.010943206027150154,
|
14 |
+
"learning_rate": 1.6563604240282684e-06,
|
15 |
+
"loss": 0.0168,
|
16 |
+
"step": 500
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.04,
|
20 |
+
"grad_norm": 0.010196206159889698,
|
21 |
+
"learning_rate": 3.312720848056537e-06,
|
22 |
+
"loss": 0.0139,
|
23 |
+
"step": 1000
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.07,
|
27 |
+
"grad_norm": 0.009697528555989265,
|
28 |
+
"learning_rate": 4.969081272084806e-06,
|
29 |
+
"loss": 0.0142,
|
30 |
+
"step": 1500
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.09,
|
34 |
+
"grad_norm": 0.011516646482050419,
|
35 |
+
"learning_rate": 6.625441696113074e-06,
|
36 |
+
"loss": 0.0139,
|
37 |
+
"step": 2000
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.11,
|
41 |
+
"grad_norm": 0.01910693757236004,
|
42 |
+
"learning_rate": 8.281802120141344e-06,
|
43 |
+
"loss": 0.0137,
|
44 |
+
"step": 2500
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.13,
|
48 |
+
"grad_norm": 0.004923399072140455,
|
49 |
+
"learning_rate": 9.938162544169612e-06,
|
50 |
+
"loss": 0.0139,
|
51 |
+
"step": 3000
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.15,
|
55 |
+
"grad_norm": 0.007313380483537912,
|
56 |
+
"learning_rate": 1.159452296819788e-05,
|
57 |
+
"loss": 0.0137,
|
58 |
+
"step": 3500
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.18,
|
62 |
+
"grad_norm": 0.003835548646748066,
|
63 |
+
"learning_rate": 1.3250883392226147e-05,
|
64 |
+
"loss": 0.0139,
|
65 |
+
"step": 4000
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.2,
|
69 |
+
"grad_norm": 0.007223702035844326,
|
70 |
+
"learning_rate": 1.4907243816254417e-05,
|
71 |
+
"loss": 0.0136,
|
72 |
+
"step": 4500
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.22,
|
76 |
+
"grad_norm": 0.010532427579164505,
|
77 |
+
"learning_rate": 1.6563604240282687e-05,
|
78 |
+
"loss": 0.0135,
|
79 |
+
"step": 5000
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.24,
|
83 |
+
"grad_norm": 0.0022224171552807093,
|
84 |
+
"learning_rate": 1.8219964664310956e-05,
|
85 |
+
"loss": 0.0137,
|
86 |
+
"step": 5500
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.27,
|
90 |
+
"grad_norm": 0.0046217963099479675,
|
91 |
+
"learning_rate": 1.9876325088339224e-05,
|
92 |
+
"loss": 0.0138,
|
93 |
+
"step": 6000
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.29,
|
97 |
+
"grad_norm": 0.007814540527760983,
|
98 |
+
"learning_rate": 2.1532685512367493e-05,
|
99 |
+
"loss": 0.0136,
|
100 |
+
"step": 6500
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.31,
|
104 |
+
"grad_norm": 0.011144978925585747,
|
105 |
+
"learning_rate": 2.318904593639576e-05,
|
106 |
+
"loss": 0.0137,
|
107 |
+
"step": 7000
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.33,
|
111 |
+
"grad_norm": 0.0014108135364949703,
|
112 |
+
"learning_rate": 2.484540636042403e-05,
|
113 |
+
"loss": 0.0138,
|
114 |
+
"step": 7500
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.35,
|
118 |
+
"grad_norm": 0.0039382693357765675,
|
119 |
+
"learning_rate": 2.6501766784452294e-05,
|
120 |
+
"loss": 0.0135,
|
121 |
+
"step": 8000
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.38,
|
125 |
+
"grad_norm": 0.014407187700271606,
|
126 |
+
"learning_rate": 2.8158127208480566e-05,
|
127 |
+
"loss": 0.0138,
|
128 |
+
"step": 8500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.4,
|
132 |
+
"grad_norm": 0.003938812296837568,
|
133 |
+
"learning_rate": 2.9814487632508834e-05,
|
134 |
+
"loss": 0.0138,
|
135 |
+
"step": 9000
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.42,
|
139 |
+
"grad_norm": 0.0075125317089259624,
|
140 |
+
"learning_rate": 2.983655639540591e-05,
|
141 |
+
"loss": 0.0141,
|
142 |
+
"step": 9500
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.44,
|
146 |
+
"grad_norm": 0.004186388570815325,
|
147 |
+
"learning_rate": 2.9652498282124278e-05,
|
148 |
+
"loss": 0.0139,
|
149 |
+
"step": 10000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.46,
|
153 |
+
"grad_norm": 0.004882327280938625,
|
154 |
+
"learning_rate": 2.9468440168842645e-05,
|
155 |
+
"loss": 0.0139,
|
156 |
+
"step": 10500
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.49,
|
160 |
+
"grad_norm": 0.002360760699957609,
|
161 |
+
"learning_rate": 2.9284382055561012e-05,
|
162 |
+
"loss": 0.0138,
|
163 |
+
"step": 11000
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.51,
|
167 |
+
"grad_norm": 0.003932056948542595,
|
168 |
+
"learning_rate": 2.910032394227938e-05,
|
169 |
+
"loss": 0.0141,
|
170 |
+
"step": 11500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.53,
|
174 |
+
"grad_norm": 0.015781084075570107,
|
175 |
+
"learning_rate": 2.8916265828997743e-05,
|
176 |
+
"loss": 0.0138,
|
177 |
+
"step": 12000
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.55,
|
181 |
+
"grad_norm": 0.002987222746014595,
|
182 |
+
"learning_rate": 2.873220771571611e-05,
|
183 |
+
"loss": 0.0138,
|
184 |
+
"step": 12500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.57,
|
188 |
+
"grad_norm": 0.002478894544765353,
|
189 |
+
"learning_rate": 2.8548149602434473e-05,
|
190 |
+
"loss": 0.0138,
|
191 |
+
"step": 13000
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.6,
|
195 |
+
"grad_norm": 0.00281110149808228,
|
196 |
+
"learning_rate": 2.836409148915284e-05,
|
197 |
+
"loss": 0.0138,
|
198 |
+
"step": 13500
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.62,
|
202 |
+
"grad_norm": 0.0016416048165410757,
|
203 |
+
"learning_rate": 2.8180033375871207e-05,
|
204 |
+
"loss": 0.0136,
|
205 |
+
"step": 14000
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.64,
|
209 |
+
"grad_norm": 0.003159256186336279,
|
210 |
+
"learning_rate": 2.7995975262589574e-05,
|
211 |
+
"loss": 0.0139,
|
212 |
+
"step": 14500
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.66,
|
216 |
+
"grad_norm": 0.03868310526013374,
|
217 |
+
"learning_rate": 2.781191714930794e-05,
|
218 |
+
"loss": 0.0151,
|
219 |
+
"step": 15000
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.68,
|
223 |
+
"grad_norm": 0.026466334238648415,
|
224 |
+
"learning_rate": 2.7627859036026308e-05,
|
225 |
+
"loss": 0.019,
|
226 |
+
"step": 15500
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.71,
|
230 |
+
"grad_norm": 0.014158655889332294,
|
231 |
+
"learning_rate": 2.7443800922744675e-05,
|
232 |
+
"loss": 0.0184,
|
233 |
+
"step": 16000
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.73,
|
237 |
+
"grad_norm": 0.0531819723546505,
|
238 |
+
"learning_rate": 2.7259742809463042e-05,
|
239 |
+
"loss": 0.018,
|
240 |
+
"step": 16500
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.75,
|
244 |
+
"grad_norm": 0.031152892857789993,
|
245 |
+
"learning_rate": 2.707568469618141e-05,
|
246 |
+
"loss": 0.0163,
|
247 |
+
"step": 17000
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.77,
|
251 |
+
"grad_norm": 0.045258529484272,
|
252 |
+
"learning_rate": 2.6891626582899776e-05,
|
253 |
+
"loss": 0.0164,
|
254 |
+
"step": 17500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.8,
|
258 |
+
"grad_norm": 0.08072955161333084,
|
259 |
+
"learning_rate": 2.6707568469618143e-05,
|
260 |
+
"loss": 0.0158,
|
261 |
+
"step": 18000
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.82,
|
265 |
+
"grad_norm": 0.06747995316982269,
|
266 |
+
"learning_rate": 2.652351035633651e-05,
|
267 |
+
"loss": 0.0155,
|
268 |
+
"step": 18500
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.84,
|
272 |
+
"grad_norm": 0.029322072863578796,
|
273 |
+
"learning_rate": 2.6339452243054877e-05,
|
274 |
+
"loss": 0.0151,
|
275 |
+
"step": 19000
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.86,
|
279 |
+
"grad_norm": 0.03149860352277756,
|
280 |
+
"learning_rate": 2.615539412977324e-05,
|
281 |
+
"loss": 0.0151,
|
282 |
+
"step": 19500
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.88,
|
286 |
+
"grad_norm": 0.03845517709851265,
|
287 |
+
"learning_rate": 2.5971336016491608e-05,
|
288 |
+
"loss": 0.0152,
|
289 |
+
"step": 20000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.91,
|
293 |
+
"grad_norm": 0.02114521712064743,
|
294 |
+
"learning_rate": 2.578727790320997e-05,
|
295 |
+
"loss": 0.0152,
|
296 |
+
"step": 20500
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.93,
|
300 |
+
"grad_norm": 0.04469970241189003,
|
301 |
+
"learning_rate": 2.560321978992834e-05,
|
302 |
+
"loss": 0.0151,
|
303 |
+
"step": 21000
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.95,
|
307 |
+
"grad_norm": 0.03439483791589737,
|
308 |
+
"learning_rate": 2.5419161676646705e-05,
|
309 |
+
"loss": 0.0148,
|
310 |
+
"step": 21500
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.97,
|
314 |
+
"grad_norm": 0.016261784359812737,
|
315 |
+
"learning_rate": 2.5235103563365072e-05,
|
316 |
+
"loss": 0.015,
|
317 |
+
"step": 22000
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.99,
|
321 |
+
"grad_norm": 0.04864068329334259,
|
322 |
+
"learning_rate": 2.505104545008344e-05,
|
323 |
+
"loss": 0.0147,
|
324 |
+
"step": 22500
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.02,
|
328 |
+
"grad_norm": 0.024570118635892868,
|
329 |
+
"learning_rate": 2.4866987336801806e-05,
|
330 |
+
"loss": 0.0149,
|
331 |
+
"step": 23000
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.04,
|
335 |
+
"grad_norm": 0.015043354593217373,
|
336 |
+
"learning_rate": 2.4682929223520173e-05,
|
337 |
+
"loss": 0.0151,
|
338 |
+
"step": 23500
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.06,
|
342 |
+
"grad_norm": 0.038648445159196854,
|
343 |
+
"learning_rate": 2.449887111023854e-05,
|
344 |
+
"loss": 0.015,
|
345 |
+
"step": 24000
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.08,
|
349 |
+
"grad_norm": 0.2623123824596405,
|
350 |
+
"learning_rate": 2.4314812996956907e-05,
|
351 |
+
"loss": 0.0148,
|
352 |
+
"step": 24500
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.1,
|
356 |
+
"grad_norm": 0.02235906571149826,
|
357 |
+
"learning_rate": 2.4130754883675274e-05,
|
358 |
+
"loss": 0.0147,
|
359 |
+
"step": 25000
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.13,
|
363 |
+
"grad_norm": 0.005854467861354351,
|
364 |
+
"learning_rate": 2.394669677039364e-05,
|
365 |
+
"loss": 0.0149,
|
366 |
+
"step": 25500
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.15,
|
370 |
+
"grad_norm": 0.011547247879207134,
|
371 |
+
"learning_rate": 2.376263865711201e-05,
|
372 |
+
"loss": 0.0147,
|
373 |
+
"step": 26000
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.17,
|
377 |
+
"grad_norm": 0.03119933046400547,
|
378 |
+
"learning_rate": 2.3578580543830375e-05,
|
379 |
+
"loss": 0.015,
|
380 |
+
"step": 26500
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.19,
|
384 |
+
"grad_norm": 0.047728102654218674,
|
385 |
+
"learning_rate": 2.339452243054874e-05,
|
386 |
+
"loss": 0.0146,
|
387 |
+
"step": 27000
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.21,
|
391 |
+
"grad_norm": 0.04931659996509552,
|
392 |
+
"learning_rate": 2.3210464317267106e-05,
|
393 |
+
"loss": 0.0145,
|
394 |
+
"step": 27500
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.24,
|
398 |
+
"grad_norm": 0.22793345153331757,
|
399 |
+
"learning_rate": 2.3026406203985473e-05,
|
400 |
+
"loss": 0.0147,
|
401 |
+
"step": 28000
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.26,
|
405 |
+
"grad_norm": 0.046943288296461105,
|
406 |
+
"learning_rate": 2.2842348090703837e-05,
|
407 |
+
"loss": 0.0149,
|
408 |
+
"step": 28500
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.28,
|
412 |
+
"grad_norm": 0.07938718795776367,
|
413 |
+
"learning_rate": 2.2658289977422203e-05,
|
414 |
+
"loss": 0.0147,
|
415 |
+
"step": 29000
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.3,
|
419 |
+
"grad_norm": 0.02574564516544342,
|
420 |
+
"learning_rate": 2.247423186414057e-05,
|
421 |
+
"loss": 0.0144,
|
422 |
+
"step": 29500
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.33,
|
426 |
+
"grad_norm": 0.011776907369494438,
|
427 |
+
"learning_rate": 2.2290173750858937e-05,
|
428 |
+
"loss": 0.0147,
|
429 |
+
"step": 30000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.35,
|
433 |
+
"grad_norm": 0.0066869258880615234,
|
434 |
+
"learning_rate": 2.2106115637577304e-05,
|
435 |
+
"loss": 0.0147,
|
436 |
+
"step": 30500
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.37,
|
440 |
+
"grad_norm": 0.010923570953309536,
|
441 |
+
"learning_rate": 2.192205752429567e-05,
|
442 |
+
"loss": 0.0145,
|
443 |
+
"step": 31000
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.39,
|
447 |
+
"grad_norm": 0.03816843405365944,
|
448 |
+
"learning_rate": 2.173799941101404e-05,
|
449 |
+
"loss": 0.0149,
|
450 |
+
"step": 31500
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.41,
|
454 |
+
"grad_norm": 0.04863005876541138,
|
455 |
+
"learning_rate": 2.1553941297732405e-05,
|
456 |
+
"loss": 0.0147,
|
457 |
+
"step": 32000
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.44,
|
461 |
+
"grad_norm": 0.09232094883918762,
|
462 |
+
"learning_rate": 2.1369883184450772e-05,
|
463 |
+
"loss": 0.0148,
|
464 |
+
"step": 32500
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.46,
|
468 |
+
"grad_norm": 0.006221645046025515,
|
469 |
+
"learning_rate": 2.118582507116914e-05,
|
470 |
+
"loss": 0.0148,
|
471 |
+
"step": 33000
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.48,
|
475 |
+
"grad_norm": 0.008674496784806252,
|
476 |
+
"learning_rate": 2.1001766957887506e-05,
|
477 |
+
"loss": 0.0145,
|
478 |
+
"step": 33500
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.5,
|
482 |
+
"grad_norm": 0.013610797002911568,
|
483 |
+
"learning_rate": 2.081770884460587e-05,
|
484 |
+
"loss": 0.0149,
|
485 |
+
"step": 34000
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.52,
|
489 |
+
"grad_norm": 0.020487351343035698,
|
490 |
+
"learning_rate": 2.0633650731324237e-05,
|
491 |
+
"loss": 0.0147,
|
492 |
+
"step": 34500
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.55,
|
496 |
+
"grad_norm": 0.004388992674648762,
|
497 |
+
"learning_rate": 2.0449592618042604e-05,
|
498 |
+
"loss": 0.0146,
|
499 |
+
"step": 35000
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.57,
|
503 |
+
"grad_norm": 0.029407095164060593,
|
504 |
+
"learning_rate": 2.026553450476097e-05,
|
505 |
+
"loss": 0.0144,
|
506 |
+
"step": 35500
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.59,
|
510 |
+
"grad_norm": 0.04079248011112213,
|
511 |
+
"learning_rate": 2.0081476391479335e-05,
|
512 |
+
"loss": 0.0146,
|
513 |
+
"step": 36000
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.61,
|
517 |
+
"grad_norm": 0.033315982669591904,
|
518 |
+
"learning_rate": 1.98974182781977e-05,
|
519 |
+
"loss": 0.0143,
|
520 |
+
"step": 36500
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.63,
|
524 |
+
"grad_norm": 0.00864444486796856,
|
525 |
+
"learning_rate": 1.971336016491607e-05,
|
526 |
+
"loss": 0.0145,
|
527 |
+
"step": 37000
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.66,
|
531 |
+
"grad_norm": 0.03435393422842026,
|
532 |
+
"learning_rate": 1.9529302051634436e-05,
|
533 |
+
"loss": 0.0145,
|
534 |
+
"step": 37500
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.68,
|
538 |
+
"grad_norm": 0.008053929544985294,
|
539 |
+
"learning_rate": 1.9345243938352803e-05,
|
540 |
+
"loss": 0.0146,
|
541 |
+
"step": 38000
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.7,
|
545 |
+
"grad_norm": 0.004771470092236996,
|
546 |
+
"learning_rate": 1.916118582507117e-05,
|
547 |
+
"loss": 0.0143,
|
548 |
+
"step": 38500
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.72,
|
552 |
+
"grad_norm": 0.016594666987657547,
|
553 |
+
"learning_rate": 1.8977127711789537e-05,
|
554 |
+
"loss": 0.0149,
|
555 |
+
"step": 39000
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.74,
|
559 |
+
"grad_norm": 0.01181800477206707,
|
560 |
+
"learning_rate": 1.8793069598507904e-05,
|
561 |
+
"loss": 0.0143,
|
562 |
+
"step": 39500
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.77,
|
566 |
+
"grad_norm": 0.03508065640926361,
|
567 |
+
"learning_rate": 1.860901148522627e-05,
|
568 |
+
"loss": 0.0146,
|
569 |
+
"step": 40000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.79,
|
573 |
+
"grad_norm": 0.028093870729207993,
|
574 |
+
"learning_rate": 1.8424953371944638e-05,
|
575 |
+
"loss": 0.0146,
|
576 |
+
"step": 40500
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.81,
|
580 |
+
"grad_norm": 0.05029403790831566,
|
581 |
+
"learning_rate": 1.8240895258663005e-05,
|
582 |
+
"loss": 0.0146,
|
583 |
+
"step": 41000
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.83,
|
587 |
+
"grad_norm": 0.006528925616294146,
|
588 |
+
"learning_rate": 1.8056837145381368e-05,
|
589 |
+
"loss": 0.0142,
|
590 |
+
"step": 41500
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.86,
|
594 |
+
"grad_norm": 0.02557162009179592,
|
595 |
+
"learning_rate": 1.7872779032099735e-05,
|
596 |
+
"loss": 0.0144,
|
597 |
+
"step": 42000
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.88,
|
601 |
+
"grad_norm": 0.025360217317938805,
|
602 |
+
"learning_rate": 1.7688720918818102e-05,
|
603 |
+
"loss": 0.0146,
|
604 |
+
"step": 42500
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.9,
|
608 |
+
"grad_norm": 0.04788580909371376,
|
609 |
+
"learning_rate": 1.750466280553647e-05,
|
610 |
+
"loss": 0.0147,
|
611 |
+
"step": 43000
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.92,
|
615 |
+
"grad_norm": 0.02906920574605465,
|
616 |
+
"learning_rate": 1.7320604692254836e-05,
|
617 |
+
"loss": 0.0144,
|
618 |
+
"step": 43500
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.94,
|
622 |
+
"grad_norm": 0.012823808006942272,
|
623 |
+
"learning_rate": 1.71365465789732e-05,
|
624 |
+
"loss": 0.0145,
|
625 |
+
"step": 44000
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.97,
|
629 |
+
"grad_norm": 0.008996455930173397,
|
630 |
+
"learning_rate": 1.6952488465691567e-05,
|
631 |
+
"loss": 0.0143,
|
632 |
+
"step": 44500
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.99,
|
636 |
+
"grad_norm": 0.010119748301804066,
|
637 |
+
"learning_rate": 1.6768430352409934e-05,
|
638 |
+
"loss": 0.0146,
|
639 |
+
"step": 45000
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.01,
|
643 |
+
"grad_norm": 0.02591855265200138,
|
644 |
+
"learning_rate": 1.65843722391283e-05,
|
645 |
+
"loss": 0.0143,
|
646 |
+
"step": 45500
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 2.03,
|
650 |
+
"grad_norm": 0.013729671947658062,
|
651 |
+
"learning_rate": 1.6400314125846668e-05,
|
652 |
+
"loss": 0.0147,
|
653 |
+
"step": 46000
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.05,
|
657 |
+
"grad_norm": 0.0771203562617302,
|
658 |
+
"learning_rate": 1.6216256012565035e-05,
|
659 |
+
"loss": 0.0146,
|
660 |
+
"step": 46500
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.08,
|
664 |
+
"grad_norm": 0.04501279070973396,
|
665 |
+
"learning_rate": 1.60321978992834e-05,
|
666 |
+
"loss": 0.0144,
|
667 |
+
"step": 47000
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.1,
|
671 |
+
"grad_norm": 0.03493111953139305,
|
672 |
+
"learning_rate": 1.584813978600177e-05,
|
673 |
+
"loss": 0.0144,
|
674 |
+
"step": 47500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.12,
|
678 |
+
"grad_norm": 0.01472916454076767,
|
679 |
+
"learning_rate": 1.5664081672720136e-05,
|
680 |
+
"loss": 0.0144,
|
681 |
+
"step": 48000
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.14,
|
685 |
+
"grad_norm": 0.04763146862387657,
|
686 |
+
"learning_rate": 1.54800235594385e-05,
|
687 |
+
"loss": 0.0145,
|
688 |
+
"step": 48500
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.16,
|
692 |
+
"grad_norm": 0.024467509239912033,
|
693 |
+
"learning_rate": 1.5295965446156866e-05,
|
694 |
+
"loss": 0.0144,
|
695 |
+
"step": 49000
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 2.19,
|
699 |
+
"grad_norm": 0.01768341101706028,
|
700 |
+
"learning_rate": 1.5111907332875235e-05,
|
701 |
+
"loss": 0.0144,
|
702 |
+
"step": 49500
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 2.21,
|
706 |
+
"grad_norm": 0.06102894991636276,
|
707 |
+
"learning_rate": 1.49278492195936e-05,
|
708 |
+
"loss": 0.0141,
|
709 |
+
"step": 50000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 2.23,
|
713 |
+
"grad_norm": 0.01851697266101837,
|
714 |
+
"learning_rate": 1.4743791106311966e-05,
|
715 |
+
"loss": 0.0142,
|
716 |
+
"step": 50500
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 2.25,
|
720 |
+
"grad_norm": 0.015444310382008553,
|
721 |
+
"learning_rate": 1.4559732993030333e-05,
|
722 |
+
"loss": 0.0145,
|
723 |
+
"step": 51000
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.27,
|
727 |
+
"grad_norm": 0.013120009563863277,
|
728 |
+
"learning_rate": 1.43756748797487e-05,
|
729 |
+
"loss": 0.0143,
|
730 |
+
"step": 51500
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 2.3,
|
734 |
+
"grad_norm": 0.01589464209973812,
|
735 |
+
"learning_rate": 1.4191616766467067e-05,
|
736 |
+
"loss": 0.0141,
|
737 |
+
"step": 52000
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 2.32,
|
741 |
+
"grad_norm": 0.040490709245204926,
|
742 |
+
"learning_rate": 1.4007558653185433e-05,
|
743 |
+
"loss": 0.0144,
|
744 |
+
"step": 52500
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 2.34,
|
748 |
+
"grad_norm": 0.025874989107251167,
|
749 |
+
"learning_rate": 1.38235005399038e-05,
|
750 |
+
"loss": 0.0143,
|
751 |
+
"step": 53000
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 2.36,
|
755 |
+
"grad_norm": 0.022394156083464622,
|
756 |
+
"learning_rate": 1.3639442426622166e-05,
|
757 |
+
"loss": 0.0144,
|
758 |
+
"step": 53500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 2.39,
|
762 |
+
"grad_norm": 0.010273805819451809,
|
763 |
+
"learning_rate": 1.3455384313340531e-05,
|
764 |
+
"loss": 0.0144,
|
765 |
+
"step": 54000
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.41,
|
769 |
+
"grad_norm": 0.028374383226037025,
|
770 |
+
"learning_rate": 1.3271326200058898e-05,
|
771 |
+
"loss": 0.0144,
|
772 |
+
"step": 54500
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 2.43,
|
776 |
+
"grad_norm": 0.018441613763570786,
|
777 |
+
"learning_rate": 1.3087268086777265e-05,
|
778 |
+
"loss": 0.0145,
|
779 |
+
"step": 55000
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 2.45,
|
783 |
+
"grad_norm": 0.006460436619818211,
|
784 |
+
"learning_rate": 1.2903209973495632e-05,
|
785 |
+
"loss": 0.0145,
|
786 |
+
"step": 55500
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 2.47,
|
790 |
+
"grad_norm": 0.00770485308021307,
|
791 |
+
"learning_rate": 1.2719151860213999e-05,
|
792 |
+
"loss": 0.0144,
|
793 |
+
"step": 56000
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.5,
|
797 |
+
"grad_norm": 0.00849447026848793,
|
798 |
+
"learning_rate": 1.2535093746932366e-05,
|
799 |
+
"loss": 0.0147,
|
800 |
+
"step": 56500
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.52,
|
804 |
+
"grad_norm": 0.035621609538793564,
|
805 |
+
"learning_rate": 1.2351035633650733e-05,
|
806 |
+
"loss": 0.0145,
|
807 |
+
"step": 57000
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.54,
|
811 |
+
"grad_norm": 0.008923010900616646,
|
812 |
+
"learning_rate": 1.2166977520369098e-05,
|
813 |
+
"loss": 0.0144,
|
814 |
+
"step": 57500
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.56,
|
818 |
+
"grad_norm": 0.0056849876418709755,
|
819 |
+
"learning_rate": 1.1982919407087464e-05,
|
820 |
+
"loss": 0.0143,
|
821 |
+
"step": 58000
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.58,
|
825 |
+
"grad_norm": 0.0071659935638308525,
|
826 |
+
"learning_rate": 1.179886129380583e-05,
|
827 |
+
"loss": 0.0144,
|
828 |
+
"step": 58500
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.61,
|
832 |
+
"grad_norm": 0.021617043763399124,
|
833 |
+
"learning_rate": 1.1614803180524198e-05,
|
834 |
+
"loss": 0.0143,
|
835 |
+
"step": 59000
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.63,
|
839 |
+
"grad_norm": 0.011144719086587429,
|
840 |
+
"learning_rate": 1.1430745067242565e-05,
|
841 |
+
"loss": 0.0142,
|
842 |
+
"step": 59500
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.65,
|
846 |
+
"grad_norm": 0.010943782515823841,
|
847 |
+
"learning_rate": 1.1246686953960932e-05,
|
848 |
+
"loss": 0.0143,
|
849 |
+
"step": 60000
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.67,
|
853 |
+
"grad_norm": 0.010286700911819935,
|
854 |
+
"learning_rate": 1.1062628840679299e-05,
|
855 |
+
"loss": 0.0143,
|
856 |
+
"step": 60500
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 2.69,
|
860 |
+
"grad_norm": 0.010169615969061852,
|
861 |
+
"learning_rate": 1.0878570727397666e-05,
|
862 |
+
"loss": 0.0143,
|
863 |
+
"step": 61000
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 2.72,
|
867 |
+
"grad_norm": 0.032067082822322845,
|
868 |
+
"learning_rate": 1.069451261411603e-05,
|
869 |
+
"loss": 0.0144,
|
870 |
+
"step": 61500
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 2.74,
|
874 |
+
"grad_norm": 0.008680183440446854,
|
875 |
+
"learning_rate": 1.0510454500834396e-05,
|
876 |
+
"loss": 0.0143,
|
877 |
+
"step": 62000
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 2.76,
|
881 |
+
"grad_norm": 0.01648719422519207,
|
882 |
+
"learning_rate": 1.0326396387552763e-05,
|
883 |
+
"loss": 0.0143,
|
884 |
+
"step": 62500
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.78,
|
888 |
+
"grad_norm": 0.0210120789706707,
|
889 |
+
"learning_rate": 1.014233827427113e-05,
|
890 |
+
"loss": 0.0146,
|
891 |
+
"step": 63000
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 2.81,
|
895 |
+
"grad_norm": 0.034336596727371216,
|
896 |
+
"learning_rate": 9.958280160989497e-06,
|
897 |
+
"loss": 0.0144,
|
898 |
+
"step": 63500
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 2.83,
|
902 |
+
"grad_norm": 0.03138417750597,
|
903 |
+
"learning_rate": 9.774222047707864e-06,
|
904 |
+
"loss": 0.0141,
|
905 |
+
"step": 64000
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 2.85,
|
909 |
+
"grad_norm": 0.01799875684082508,
|
910 |
+
"learning_rate": 9.590163934426231e-06,
|
911 |
+
"loss": 0.0142,
|
912 |
+
"step": 64500
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 2.87,
|
916 |
+
"grad_norm": 0.02960127592086792,
|
917 |
+
"learning_rate": 9.406105821144595e-06,
|
918 |
+
"loss": 0.0143,
|
919 |
+
"step": 65000
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 2.89,
|
923 |
+
"grad_norm": 0.012712860479950905,
|
924 |
+
"learning_rate": 9.222047707862962e-06,
|
925 |
+
"loss": 0.0146,
|
926 |
+
"step": 65500
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 2.92,
|
930 |
+
"grad_norm": 0.009180006571114063,
|
931 |
+
"learning_rate": 9.037989594581329e-06,
|
932 |
+
"loss": 0.0143,
|
933 |
+
"step": 66000
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 2.94,
|
937 |
+
"grad_norm": 0.0106426402926445,
|
938 |
+
"learning_rate": 8.853931481299696e-06,
|
939 |
+
"loss": 0.0143,
|
940 |
+
"step": 66500
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 2.96,
|
944 |
+
"grad_norm": 0.03638075664639473,
|
945 |
+
"learning_rate": 8.669873368018063e-06,
|
946 |
+
"loss": 0.0141,
|
947 |
+
"step": 67000
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 2.98,
|
951 |
+
"grad_norm": 0.02028089202940464,
|
952 |
+
"learning_rate": 8.48581525473643e-06,
|
953 |
+
"loss": 0.0144,
|
954 |
+
"step": 67500
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 3.0,
|
958 |
+
"grad_norm": 0.004987742286175489,
|
959 |
+
"learning_rate": 8.301757141454797e-06,
|
960 |
+
"loss": 0.0143,
|
961 |
+
"step": 68000
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 3.03,
|
965 |
+
"grad_norm": 0.012421207502484322,
|
966 |
+
"learning_rate": 8.117699028173162e-06,
|
967 |
+
"loss": 0.0145,
|
968 |
+
"step": 68500
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 3.05,
|
972 |
+
"grad_norm": 0.05489884316921234,
|
973 |
+
"learning_rate": 7.933640914891527e-06,
|
974 |
+
"loss": 0.0142,
|
975 |
+
"step": 69000
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 3.07,
|
979 |
+
"grad_norm": 0.007833471521735191,
|
980 |
+
"learning_rate": 7.749582801609894e-06,
|
981 |
+
"loss": 0.0145,
|
982 |
+
"step": 69500
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 3.09,
|
986 |
+
"grad_norm": 0.014776123687624931,
|
987 |
+
"learning_rate": 7.565524688328261e-06,
|
988 |
+
"loss": 0.0142,
|
989 |
+
"step": 70000
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 3.11,
|
993 |
+
"grad_norm": 0.015590249560773373,
|
994 |
+
"learning_rate": 7.381466575046628e-06,
|
995 |
+
"loss": 0.0143,
|
996 |
+
"step": 70500
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 3.14,
|
1000 |
+
"grad_norm": 0.018214261159300804,
|
1001 |
+
"learning_rate": 7.197408461764995e-06,
|
1002 |
+
"loss": 0.0142,
|
1003 |
+
"step": 71000
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 3.16,
|
1007 |
+
"grad_norm": 0.029773008078336716,
|
1008 |
+
"learning_rate": 7.013350348483361e-06,
|
1009 |
+
"loss": 0.0143,
|
1010 |
+
"step": 71500
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 3.18,
|
1014 |
+
"grad_norm": 0.028139958158135414,
|
1015 |
+
"learning_rate": 6.8292922352017276e-06,
|
1016 |
+
"loss": 0.0143,
|
1017 |
+
"step": 72000
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 3.2,
|
1021 |
+
"grad_norm": 0.024558302015066147,
|
1022 |
+
"learning_rate": 6.6452341219200945e-06,
|
1023 |
+
"loss": 0.014,
|
1024 |
+
"step": 72500
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 3.22,
|
1028 |
+
"grad_norm": 0.05188705772161484,
|
1029 |
+
"learning_rate": 6.461176008638461e-06,
|
1030 |
+
"loss": 0.0141,
|
1031 |
+
"step": 73000
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 3.25,
|
1035 |
+
"grad_norm": 0.02240253984928131,
|
1036 |
+
"learning_rate": 6.277117895356828e-06,
|
1037 |
+
"loss": 0.0142,
|
1038 |
+
"step": 73500
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 3.27,
|
1042 |
+
"grad_norm": 0.015994379296898842,
|
1043 |
+
"learning_rate": 6.093059782075194e-06,
|
1044 |
+
"loss": 0.0143,
|
1045 |
+
"step": 74000
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 3.29,
|
1049 |
+
"grad_norm": 0.014095323160290718,
|
1050 |
+
"learning_rate": 5.909001668793561e-06,
|
1051 |
+
"loss": 0.0141,
|
1052 |
+
"step": 74500
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 3.31,
|
1056 |
+
"grad_norm": 0.0076615894213318825,
|
1057 |
+
"learning_rate": 5.724943555511927e-06,
|
1058 |
+
"loss": 0.0141,
|
1059 |
+
"step": 75000
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 3.34,
|
1063 |
+
"grad_norm": 0.023330098018050194,
|
1064 |
+
"learning_rate": 5.540885442230294e-06,
|
1065 |
+
"loss": 0.0143,
|
1066 |
+
"step": 75500
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 3.36,
|
1070 |
+
"grad_norm": 0.022397508844733238,
|
1071 |
+
"learning_rate": 5.35682732894866e-06,
|
1072 |
+
"loss": 0.0141,
|
1073 |
+
"step": 76000
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 3.38,
|
1077 |
+
"grad_norm": 0.01998765394091606,
|
1078 |
+
"learning_rate": 5.172769215667027e-06,
|
1079 |
+
"loss": 0.0143,
|
1080 |
+
"step": 76500
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 3.4,
|
1084 |
+
"grad_norm": 0.07193479686975479,
|
1085 |
+
"learning_rate": 4.988711102385393e-06,
|
1086 |
+
"loss": 0.0143,
|
1087 |
+
"step": 77000
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 3.42,
|
1091 |
+
"grad_norm": 0.030124777927994728,
|
1092 |
+
"learning_rate": 4.80465298910376e-06,
|
1093 |
+
"loss": 0.0146,
|
1094 |
+
"step": 77500
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 3.45,
|
1098 |
+
"grad_norm": 0.0762249082326889,
|
1099 |
+
"learning_rate": 4.620594875822126e-06,
|
1100 |
+
"loss": 0.0144,
|
1101 |
+
"step": 78000
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 3.47,
|
1105 |
+
"grad_norm": 0.030013220384716988,
|
1106 |
+
"learning_rate": 4.4365367625404925e-06,
|
1107 |
+
"loss": 0.0143,
|
1108 |
+
"step": 78500
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 3.49,
|
1112 |
+
"grad_norm": 0.013210024684667587,
|
1113 |
+
"learning_rate": 4.2524786492588595e-06,
|
1114 |
+
"loss": 0.0144,
|
1115 |
+
"step": 79000
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 3.51,
|
1119 |
+
"grad_norm": 0.021476522088050842,
|
1120 |
+
"learning_rate": 4.068420535977226e-06,
|
1121 |
+
"loss": 0.0145,
|
1122 |
+
"step": 79500
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 3.53,
|
1126 |
+
"grad_norm": 0.005120801739394665,
|
1127 |
+
"learning_rate": 3.884362422695593e-06,
|
1128 |
+
"loss": 0.0142,
|
1129 |
+
"step": 80000
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 3.56,
|
1133 |
+
"grad_norm": 0.03378542512655258,
|
1134 |
+
"learning_rate": 3.7003043094139592e-06,
|
1135 |
+
"loss": 0.0144,
|
1136 |
+
"step": 80500
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 3.58,
|
1140 |
+
"grad_norm": 0.004559422377496958,
|
1141 |
+
"learning_rate": 3.5162461961323254e-06,
|
1142 |
+
"loss": 0.0143,
|
1143 |
+
"step": 81000
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 3.6,
|
1147 |
+
"grad_norm": 0.022087154909968376,
|
1148 |
+
"learning_rate": 3.3321880828506924e-06,
|
1149 |
+
"loss": 0.0142,
|
1150 |
+
"step": 81500
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 3.62,
|
1154 |
+
"grad_norm": 0.027302134782075882,
|
1155 |
+
"learning_rate": 3.1481299695690585e-06,
|
1156 |
+
"loss": 0.0142,
|
1157 |
+
"step": 82000
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 3.64,
|
1161 |
+
"grad_norm": 0.0070667564868927,
|
1162 |
+
"learning_rate": 2.964071856287425e-06,
|
1163 |
+
"loss": 0.0142,
|
1164 |
+
"step": 82500
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 3.67,
|
1168 |
+
"grad_norm": 0.004392644390463829,
|
1169 |
+
"learning_rate": 2.7800137430057916e-06,
|
1170 |
+
"loss": 0.014,
|
1171 |
+
"step": 83000
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 3.69,
|
1175 |
+
"grad_norm": 0.004756265785545111,
|
1176 |
+
"learning_rate": 2.595955629724158e-06,
|
1177 |
+
"loss": 0.0144,
|
1178 |
+
"step": 83500
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 3.71,
|
1182 |
+
"grad_norm": 0.028167065232992172,
|
1183 |
+
"learning_rate": 2.4118975164425248e-06,
|
1184 |
+
"loss": 0.0141,
|
1185 |
+
"step": 84000
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 3.73,
|
1189 |
+
"grad_norm": 0.04241223633289337,
|
1190 |
+
"learning_rate": 2.2278394031608913e-06,
|
1191 |
+
"loss": 0.0143,
|
1192 |
+
"step": 84500
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 3.75,
|
1196 |
+
"grad_norm": 0.0073333000764250755,
|
1197 |
+
"learning_rate": 2.043781289879258e-06,
|
1198 |
+
"loss": 0.014,
|
1199 |
+
"step": 85000
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 3.78,
|
1203 |
+
"grad_norm": 0.022960776463150978,
|
1204 |
+
"learning_rate": 1.8597231765976245e-06,
|
1205 |
+
"loss": 0.0146,
|
1206 |
+
"step": 85500
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 3.8,
|
1210 |
+
"grad_norm": 0.009491208009421825,
|
1211 |
+
"learning_rate": 1.675665063315991e-06,
|
1212 |
+
"loss": 0.0143,
|
1213 |
+
"step": 86000
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 3.82,
|
1217 |
+
"grad_norm": 0.04244249686598778,
|
1218 |
+
"learning_rate": 1.4916069500343576e-06,
|
1219 |
+
"loss": 0.0142,
|
1220 |
+
"step": 86500
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 3.84,
|
1224 |
+
"grad_norm": 0.0845978856086731,
|
1225 |
+
"learning_rate": 1.307548836752724e-06,
|
1226 |
+
"loss": 0.0139,
|
1227 |
+
"step": 87000
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 3.87,
|
1231 |
+
"grad_norm": 0.012684383429586887,
|
1232 |
+
"learning_rate": 1.1234907234710905e-06,
|
1233 |
+
"loss": 0.0143,
|
1234 |
+
"step": 87500
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 3.89,
|
1238 |
+
"grad_norm": 0.010290221311151981,
|
1239 |
+
"learning_rate": 9.394326101894571e-07,
|
1240 |
+
"loss": 0.0144,
|
1241 |
+
"step": 88000
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 3.91,
|
1245 |
+
"grad_norm": 0.009122644551098347,
|
1246 |
+
"learning_rate": 7.553744969078238e-07,
|
1247 |
+
"loss": 0.0143,
|
1248 |
+
"step": 88500
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 3.93,
|
1252 |
+
"grad_norm": 0.02026693895459175,
|
1253 |
+
"learning_rate": 5.713163836261902e-07,
|
1254 |
+
"loss": 0.0142,
|
1255 |
+
"step": 89000
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 3.95,
|
1259 |
+
"grad_norm": 0.03241865336894989,
|
1260 |
+
"learning_rate": 3.8725827034455676e-07,
|
1261 |
+
"loss": 0.0142,
|
1262 |
+
"step": 89500
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 3.98,
|
1266 |
+
"grad_norm": 0.04753628000617027,
|
1267 |
+
"learning_rate": 2.0320015706292333e-07,
|
1268 |
+
"loss": 0.0142,
|
1269 |
+
"step": 90000
|
1270 |
+
}
|
1271 |
+
],
|
1272 |
+
"logging_steps": 500,
|
1273 |
+
"max_steps": 90552,
|
1274 |
+
"num_input_tokens_seen": 0,
|
1275 |
+
"num_train_epochs": 4,
|
1276 |
+
"save_steps": 10000,
|
1277 |
+
"total_flos": 0.0,
|
1278 |
+
"train_batch_size": 32,
|
1279 |
+
"trial_name": null,
|
1280 |
+
"trial_params": null
|
1281 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c9d2d8c930913ff2f4ae4382de12a1443b6cd2be1903c4675e15ed7f1a359e1
|
3 |
+
size 5176
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|