File size: 1,262 Bytes
c21d84d
 
ba61fed
 
 
 
 
 
c21d84d
 
ba61fed
 
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
c21d84d
ba61fed
 
 
 
 
 
 
 
 
 
 
 
c21d84d
ba61fed
c21d84d
 
 
ba61fed
c21d84d
ba61fed
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
library_name: transformers
base_model: neeleshg23/jamba-1.9b-7
tags:
- generated_from_trainer
model-index:
- name: jamba-1.9b-8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# jamba-1.9b-8

This model is a fine-tuned version of [neeleshg23/jamba-1.9b-7](https://huggingface.co/neeleshg23/jamba-1.9b-7) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3