File size: 13,758 Bytes
c12f130
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d5bd3480c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d5bd3480ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d5bd3480d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d5bd3480dc0>", "_build": "<function ActorCriticPolicy._build at 0x7d5bd3480e50>", "forward": "<function ActorCriticPolicy.forward at 0x7d5bd3480ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d5bd3480f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d5bd3481000>", "_predict": "<function ActorCriticPolicy._predict at 0x7d5bd3481090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d5bd3481120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d5bd34811b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d5bd3481240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5bd361f980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1003904, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699362335497884678, "learning_rate": 0.00025, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoWkT2DH149Ir5bPjGlV74wLdQ9NxbLPQAAAAAAAAAAwE67PcOdW7rFQEO5cbS8tSHNATsQGyg1AACAPwAAgD8AMBy8FFyiut049zsEBq43uMWpOoDcizYAAIA/AACAP9q0sj17npK61u7aOdgQhrafUys60+LyuAAAgD8AAIA/ACSZPQPGXLwc4AU+MvC+vbL1pb16V5++AACAPwAAgD9m8IK8XKN0un7EDzTi6ymxuzWQOg0C0rMAAIA/AACAP4A5Ej1I/426asm3N8sxxjKvHde6OMvUtgAAgD8AAIA/AKgBO/ZEGborbt46katdNeREsLoa6v+5AACAPwAAgD9maz09ewaXuiYMPTocaiO2oNABOpUTWrkAAIA/AACAP80AlbvDVU+6Ei6QOga5DDYeuR07fp6muQAAgD8AAIA/AFIRvYVD0bk3JYa5J3a8tJAA4TqkZp04AACAPwAAgD8zYBU9trZcvGh6u7sGP0897f0ZvfUUBzwAAIA/AACAP+bfNr32oGi62iWBO94cCTgOKwc7UjI0ugAAgD8AAIA/pmiHPbhexrnFDo+6RIX7szRKHTu/bqc5AACAPwAAgD8AxqY8XDdQuuBcHDhZqIIzsx0QO16bMbcAAIA/AACAP81UsLsp6Bm6CMjZuomICrEqeyi60En9OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0039039999999999075, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHnu/Dcdo6MAWyUTegDjAF0lEdArGruKCQLeHV9lChoBkdAYsQOktVaOmgHTegDaAhHQKxvFmZmZmZ1fZQoaAZHQGL37tZ3cHpoB03oA2gIR0CscIZj6N2ldX2UKGgGR0BhFc1jy4FzaAdN6ANoCEdArHH9TxXnyXV9lChoBkdAY6wUkfLcK2gHTegDaAhHQKx1ihQFcIJ1fZQoaAZHQGPXQ9zOopBoB03oA2gIR0CsdfA8jiXIdX2UKGgGR0A9dSFoL5RCaAdL42gIR0Cseb5tWMjvdX2UKGgGR0Bl19OO801qaAdN6ANoCEdArHwVKh+OO3V9lChoBkdAZaUXD3ueBmgHTegDaAhHQKx9YJBPbfx1fZQoaAZHQGNi624NI9VoB03oA2gIR0CsfumiQDFIdX2UKGgGR0BmFbJZGKAKaAdN6ANoCEdArH7rOTq0MXV9lChoBkdAY+BfD1oQF2gHTegDaAhHQKyDEKLKmsN1fZQoaAZHQGLLsT37DVJoB03oA2gIR0Csg3qj8DSxdX2UKGgGR0BlBRxxT850aAdN6ANoCEdArIO4lnh86XV9lChoBkdAZ8sdmQKa5WgHTegDaAhHQKyFYJuVHFx1fZQoaAZHQGFyrdFfAsVoB03oA2gIR0CsicRbbDdhdX2UKGgGR0Bl+i9RJmNBaAdN6ANoCEdArItEGZ/kNnV9lChoBkdAY9B1Fpfx+mgHTegDaAhHQKyOKNrCWNZ1fZQoaAZHQGVtvA44p+doB03oA2gIR0CskoW56MR6dX2UKGgGR0Bm7BYJVsDXaAdN6ANoCEdArJP/jsD4g3V9lChoBkdAYn6DFqBVdWgHTegDaAhHQKyZC68QI2R1fZQoaAZHQGk5Px6OYIBoB03oA2gIR0CsmXjmbLEDdX2UKGgGR0BjiUyFfzBiaAdN6ANoCEdArJ01S2phnnV9lChoBkdAY4CldkauOmgHTegDaAhHQKyf3CJGe+V1fZQoaAZHQGZJqsuFpPBoB03oA2gIR0CsoYfwZwXJdX2UKGgGR0BhO+CkGiYcaAdN6ANoCEdArKNJosZpBXV9lChoBkdAX29E0BOpKmgHTegDaAhHQKyjSwJPZZl1fZQoaAZHQGCReMyad+ZoB03oA2gIR0Csp09N34bkdX2UKGgGR0BlCRe/pMYeaAdN6ANoCEdArKe1itq59XV9lChoBkdAZKTPSlWOqGgHTegDaAhHQKyn7TWGyop1fZQoaAZHQF92/smfGuNoB03oA2gIR0CsqV4+Sr5qdX2UKGgGR0Bx+axbB42TaAdNzAJoCEdArQo+kWRA8nV9lChoBkdAYyJfiPyTZGgHTegDaAhHQK0KkWepXIV1fZQoaAZHQFtru3+dbxFoB03oA2gIR0CtC7N3fQ8fdX2UKGgGR0BmqC7TUiIMaAdN6ANoCEdArQ4aQV9F4XV9lChoBkdAcStPva11GWgHTWMBaAhHQK0P49vCMxZ1fZQoaAZHQGJmYmsvIwNoB03oA2gIR0CtExLfcer/dX2UKGgGR0BtbVdzGPxQaAdNKwJoCEdArRdOcSXdCXV9lChoBkdAZmFAsTWXkmgHTegDaAhHQK0XnUpd8iR1fZQoaAZHQGhoCz9jwx5oB03oA2gIR0CtF/SNXHR1dX2UKGgGR0Bk4p9b5dnkaAdN6ANoCEdArRvmVNYbKnV9lChoBkdAYY9njABT42gHTegDaAhHQK0ez69kBjp1fZQoaAZHQGcet1QqI8BoB03oA2gIR0CtIJbo0Q9SdX2UKGgGR0BxW1RwZOzqaAdN5gNoCEdArSI91nuiOHV9lChoBkdAX5r07KaG6GgHTegDaAhHQK0iVxFy7wt1fZQoaAZHQGXte98JD3NoB03oA2gIR0CtJoIL5RCQdX2UKGgGR0Boxvl8w5/9aAdN6ANoCEdArSbi66J66nV9lChoBkdAZ1njiGWUr2gHTegDaAhHQK0rUWnCO3l1fZQoaAZHQGZI+717IDJoB03oA2gIR0CtK7NSZSeidX2UKGgGR0BxdLZnL7oCaAdNxgFoCEdArSzOHzpX63V9lChoBkdAYbiHQhOgx2gHTegDaAhHQK0tEws5GSZ1fZQoaAZHQGDrR0dRziloB03oA2gIR0CtL5eKKpDNdX2UKGgGR0BjfWpqASWaaAdN6ANoCEdArTGCqsEJSnV9lChoBkdAYjIb3oLXtmgHTegDaAhHQK00uA6Mir11fZQoaAZHQF73ps41gploB03oA2gIR0CtONl9a2WqdX2UKGgGR0Bj2JNwiqyXaAdN6ANoCEdArTklw5vLo3V9lChoBkdAYsmXCTEBKmgHTegDaAhHQK05f2zv7WN1fZQoaAZHQGQBj8+A3DNoB03oA2gIR0CtP+CqQzUJdX2UKGgGR0BkujqdH2AYaAdN6ANoCEdArUFFd3SrpHV9lChoBkdAZpYlZ5iVjmgHTegDaAhHQK1Cu/1QIld1fZQoaAZHQGQ9BHkLhJloB03oA2gIR0CtQs80+C9RdX2UKGgGR0BmBVFa0QbuaAdN6ANoCEdArUZZ5HEuQXV9lChoBkdAZFGBzV+ZxGgHTegDaAhHQK1GnkRSP2h1fZQoaAZHQGGpu/L1VYJoB03oA2gIR0CtqTLleWv9dX2UKGgGR0Bj+TI5o4+9aAdN6ANoCEdAramNfzBhyHV9lChoBkdAXZV/y5I6KmgHTegDaAhHQK2ql36hxo91fZQoaAZHQGR7WGATZg5oB03oA2gIR0CtqthPsRg7dX2UKGgGR0Bk3+dqcmShaAdN6ANoCEdAra0w3T/hl3V9lChoBkdAZYbd69kBjmgHTegDaAhHQK2u9Lg4wRJ1fZQoaAZHQGQQ5/CqIadoB03oA2gIR0CtsiYx+KCQdX2UKGgGR0BwL2J40Mw2aAdNVAFoCEdArbQ0w8GLUHV9lChoBkdAcKez4k/r0WgHTboCaAhHQK215aRp1zR1fZQoaAZHQGKTHEMspXpoB03oA2gIR0CtttnqeK8+dX2UKGgGR0BgwBywOe8PaAdN6ANoCEdArbdXjuKGcnV9lChoBkdAYLhRYRujymgHTegDaAhHQK23z0dRzil1fZQoaAZHQGTRinHeaa1oB03oA2gIR0CtvzvVd5Y6dX2UKGgGR0BlqZiobXHzaAdN6ANoCEdArcDrFGXoknV9lChoBkdAZ7PDUExIrmgHTegDaAhHQK3CcyfL9uR1fZQoaAZHQHJbpgogFHJoB00uAWgIR0CtwwQGOdXldX2UKGgGR0Bl+Q6IWP92aAdN6ANoCEdArcW4dS2phnV9lChoBkdAYtV/IbOu72gHTegDaAhHQK3GBt0mtyR1fZQoaAZHQGOdzi83+/BoB03oA2gIR0Ctyo9Xko4NdX2UKGgGR0Bj8StA9mpVaAdN6ANoCEdArcr1SuQp4XV9lChoBkdAYoJNA1Nxl2gHTegDaAhHQK3MdMnJDE51fZQoaAZHQERW9AX2ugZoB0veaAhHQK3NA2jwhGJ1fZQoaAZHQG+na0Y0l7doB00vAWgIR0CtzyhQ3xWldX2UKGgGR0BnZYGUwBYFaAdN6ANoCEdArc89JBgNPXV9lChoBkdAZE2Zw4sEq2gHTegDaAhHQK3RDe0G/vh1fZQoaAZHQEb8TQE6kqNoB0vsaAhHQK3T8SZBsyl1fZQoaAZHQGLro4+8oQZoB03oA2gIR0Ct1EpT2nKodX2UKGgGR0BiN5wZOzppaAdN6ANoCEdArdZpO58Sf3V9lChoBkdAYa2R+z+m32gHTegDaAhHQK3YWhnJ1aJ1fZQoaAZHQGf07JW/8EVoB03oA2gIR0Ct2YcebNKRdX2UKGgGR0BozwhIOH32aAdN6ANoCEdArdn6COFQEnV9lChoBkdAcpBbnHNorWgHTZcBaAhHQK3czmSyMUB1fZQoaAZHQGVm3FtKqXFoB03oA2gIR0Ct4R5HNHH4dX2UKGgGR0BibDi2lVLjaAdN6ANoCEdAreJnozN2T3V9lChoBkdAZxSrT6SDAmgHTegDaAhHQK3jo1Nxlxx1fZQoaAZHQFJZa8Hv+fhoB0vAaAhHQK3jy7ulXRx1fZQoaAZHQF5UfEXLvCxoB03oA2gIR0Ct5C7uMMqjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}