ppo-LunarLander-v2 / config.json
nekoboost's picture
Upload PPO LunarLander-v2 trained agent
fdd4ae4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07ed6c1000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07ed6c1090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07ed6c1120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07ed6c11b0>", "_build": "<function ActorCriticPolicy._build at 0x7f07ed6c1240>", "forward": "<function ActorCriticPolicy.forward at 0x7f07ed6c12d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f07ed6c1360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07ed6c13f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f07ed6c1480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07ed6c1510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07ed6c15a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07ed6c1630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f07ed6b3a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688593978600697236, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPggz5SHbg/aadFP6aDU765HIK+FYRjvAAAAAAAAAAAo3WAPoBUhD+CqSc+ds5Iv33SvT6oUGI+AAAAAAAAAADllJe+6ha8PzLJOb+Mg2S+TzlSvr6vUL4AAAAAAAAAAOZNBD8lIqQ/uxVOPwXyNr92dzq+1vgcvQAAAAAAAAAAADhjuzffCD++w1A8zcJvv3Q2wLz4OZA9AAAAAAAAAACAhgs9Ll67P2fDLz/MJuM+38wXvQyxy70AAAAAAAAAABR5T7+/NGc+TsFev1Cvqr+WBcU+BQxRPgAAAAAAAAAAzRPwvGczQz/uGRi9yyBwv1kSBr2O3Y29AAAAAAAAAACmlQs+ZqsgPxDGKT6tn3S/c7jSPd9kGj4AAAAAAAAAAM0o7rwNWyU+qxbivGltsr/02Sa9dd5QvAAAAAAAAAAA4fpVv+vtfD8OqdK/Dcdfv/fcpz/yawI+AAAAAAAAAACzgng/XA5TPjaqwT8UXbe/+ImDv/oY+7wAAAAAAAAAAADO+DxCW1U/sJOgPQJvc7/VK6O9aSgLPQAAAAAAAAAAs0BMvppvdj9kg7e+AO86vykBqL2eCrO9AAAAAAAAAACmBD8+L5vIPvquvT5CAa6/IxIkvwCHjb0AAAAAAAAAAM240bstlLQ/GurvvfXPPr2S2O07Of6MPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFYD8lXzUZyMAWyUS0GMAXSUR0BpyyM3qAz6dX2UKGgGR8BMzRr8BMi9aAdLXWgIR0BpywZZSvTxdX2UKGgGR8Bx6yJEYwZgaAdLdWgIR0BpyydlNDc/dX2UKGgGR8BHVdU0elsQaAdLQGgIR0BpzJBAv+OwdX2UKGgGR8BfSmoBJZntaAdLXGgIR0BpzFD+irT6dX2UKGgGR8Bom/TI/7iyaAdLR2gIR0BpzPyqdYnwdX2UKGgGR8BS4RVQyhzvaAdLQ2gIR0BpzSay8jA0dX2UKGgGR8BmExJPIn0DaAdLSGgIR0BpzW912aDxdX2UKGgGR8BlQQ6+36RAaAdLaGgIR0BpzZflZHNHdX2UKGgGR8BVq8N2C/XYaAdLeGgIR0BpziP+4smOdX2UKGgGR8BcCGWpqASWaAdLQmgIR0Bp0d7WuoxYdX2UKGgGR8BSxahUR3/xaAdLO2gIR0Bp0/mgam4zdX2UKGgGR8BcQvYWcjJNaAdLOWgIR0Bp0+rS3LFGdX2UKGgGR8BehFsk6cRUaAdLbmgIR0Bp1SdWhh6TdX2UKGgGR8BlEyThYNiIaAdLZGgIR0Bp1Rk078vVdX2UKGgGR8BYd+54GD+SaAdLS2gIR0Bp1az5XU6QdX2UKGgGR8B7bx/0/W1/aAdLaGgIR0Bp1iMYMvytdX2UKGgGR8BfBDtCzC1raAdLWWgIR0Bp1dbor4FidX2UKGgGR8BZSNiDujREaAdLcGgIR0Bp1xWgezUrdX2UKGgGR8BgPlSEUTL4aAdLaGgIR0Bp19ZJTVDsdX2UKGgGR8B5zmnIhhYvaAdLbGgIR0Bp2HL9uP3jdX2UKGgGR8Bh89GViWmhaAdLWGgIR0Bp2HBWPtD2dX2UKGgGR8BgF1eruIAPaAdLXmgIR0Bp2QB91EE1dX2UKGgGR8B7+NvxYq5LaAdLamgIR0Bp2VE9dNWVdX2UKGgGR8BQbgaFVT73aAdLP2gIR0Bp2fBDXvphdX2UKGgGR8Bax7n9vS+haAdLkmgIR0Bp3AVuaWondX2UKGgGR8BxIxdNWU8naAdLdWgIR0Bp3FsrNGExdX2UKGgGR8BZe1/H5rP/aAdLQmgIR0Bp3XbAUL2IdX2UKGgGR8BlXHJJXhfjaAdLRWgIR0Bp3kM9bHIZdX2UKGgGR8BjLyJfpljFaAdLPmgIR0Bp3s+TvAoHdX2UKGgGR8BvTl+LFXJYaAdLWWgIR0Bp3yUTtb9qdX2UKGgGR8BySAclw97oaAdLXmgIR0Bp39lwtJ4CdX2UKGgGR8BSue7xusLfaAdLY2gIR0Bp4abvw3HadX2UKGgGR8BciKq4pc5baAdLTWgIR0Bp4Z+2E0zkdX2UKGgGR7/5CD7IkqtpaAdLSGgIR0Bp4nXXiBGydX2UKGgGR8BiT0qx1PnCaAdLZmgIR0Bp4xKL876pdX2UKGgGR8BtpGJm/WUbaAdLUWgIR0Bp4z4DcM3IdX2UKGgGR8BrnqXIEKVqaAdLWGgIR0Bp45FTefqYdX2UKGgGR8Bd947/4qPPaAdLQGgIR0Bp5FcOby6MdX2UKGgGR8Bx6RwGW2PUaAdLcmgIR0Bp5DibUgB+dX2UKGgGR8Bt3iKiwjdIaAdLZWgIR0Bp5RML4N7TdX2UKGgGR8BatP2PDHfeaAdLSWgIR0Bp5cJhOP/8dX2UKGgGR8BhT6Hbh3qzaAdLTmgIR0Bp5y24NI9UdX2UKGgGR8B1OLz9S/CZaAdLbGgIR0Bp52Gj9GZvdX2UKGgGR8Bf98jZ+QU6aAdLV2gIR0Bp6emYSg5BdX2UKGgGR8BTr4j8k2P1aAdLPGgIR0Bp6xyuIRAbdX2UKGgGR8BYOBG+bmU4aAdLQWgIR0Bp60tuk1uSdX2UKGgGR8B4BtffGdZraAdLYGgIR0Bp7COzY287dX2UKGgGR8BjRzFERaouaAdLZ2gIR0Bp6/iFTNt7dX2UKGgGR8BXHX0f5k9VaAdLTWgIR0Bp7DfzjFQ3dX2UKGgGR8BeMhdt2s7uaAdLcWgIR0Bp7LriVB2PdX2UKGgGR8B8GfIyTINmaAdLXWgIR0Bp7V2eQMhHdX2UKGgGR8AxwN/OMVDbaAdLXWgIR0Bp7VQuVX3hdX2UKGgGR8Bwiu10DEFXaAdLTmgIR0Bp7lDIBBAwdX2UKGgGR8BQa2luWKMvaAdLQGgIR0Bp78wg1WKedX2UKGgGR8BFlaYNRWLhaAdLZGgIR0Bp7/+qBErodX2UKGgGR8BhCy0BwMpgaAdLW2gIR0Bp8O5QP7N0dX2UKGgGR8BV8/AO8TSLaAdLPGgIR0Bp8k6xPfsNdX2UKGgGR8Bt+mB6KLsKaAdLYWgIR0Bp8qbF0gbIdX2UKGgGR8Bmr8q6OHWSaAdLb2gIR0Bp8s3Kji4sdX2UKGgGR7/dzSThYNiIaAdLWmgIR0Bp81Brvb48dX2UKGgGR8BExT5wfhddaAdLQmgIR0Bp8/4yoGY8dX2UKGgGR8BYTSzTnaFmaAdLPGgIR0Bp9lxIatLddX2UKGgGR8BZ3pvcafjCaAdLQWgIR0Bp9jLOiWVvdX2UKGgGR8BrdbBqKxcFaAdLUWgIR0Bp9sBZIQOGdX2UKGgGR8Bdrn6/IsAeaAdLTmgIR0Bp98ZccENfdX2UKGgGR8BPH3BpHqeLaAdLPmgIR0Bp+CJGe+VUdX2UKGgGR8BgHM/MW43FaAdLZWgIR0Bp+KufVZs9dX2UKGgGR8BdqOearmyPaAdLPGgIR0Bp+hDkU9IPdX2UKGgGR8BiIFsxfv4NaAdLZ2gIR0Bp+l5nlGPQdX2UKGgGR8Bp24te2NNraAdLaWgIR0Bp+h5Z8rqddX2UKGgGR8BRGnXNC7btaAdLQWgIR0Bp+vXwsoUjdX2UKGgGR8BR0wHzH0btaAdLe2gIR0Bp/CULUkOadX2UKGgGR8BbSrHuJDVpaAdLX2gIR0Bp/FtsN2C/dX2UKGgGR8BuIuOKfnOjaAdLXWgIR0Bp/OKQ7tAtdX2UKGgGR8BXcAOjIq9XaAdLQWgIR0Bp/mT3Zf2LdX2UKGgGR8Bo72zposZpaAdLXmgIR0Bp/zQw9JSSdX2UKGgGR8BoD8m6XjU/aAdLZGgIR0Bp/2/zreImdX2UKGgGR8BVdF6Z6UqyaAdLSmgIR0Bp//0RODaodX2UKGgGR8BYLfZIxxkvaAdLPmgIR0BqAFsvZh8ZdX2UKGgGR8BZaBzmwJPZaAdLV2gIR0BqAUXYUWVNdX2UKGgGR8Bbno8U21lYaAdLaWgIR0BqATdP+GXYdX2UKGgGR8BpjHmaH9FXaAdLS2gIR0BqAXpY9xIbdX2UKGgGR8BqZsqMFUyYaAdLSGgIR0BqA0ZgogFHdX2UKGgGR8BgD6zHCGeuaAdLUmgIR0BqBDZnL7oCdX2UKGgGR8Bgi3kYGdI5aAdLQ2gIR0BqBrDqGDcudX2UKGgGR8BulHnuAqd6aAdLd2gIR0BqBqgK4QSSdX2UKGgGR8BuwcwaisXBaAdLZWgIR0BqB4ybhFVldX2UKGgGR8BgEWCVbA1vaAdLPmgIR0BqCCTKT0QLdX2UKGgGR8B6Bcx20Re1aAdLcmgIR0BqCEbYK6WgdX2UKGgGR8BfcbQPZqVRaAdLRGgIR0BqCJE2Hck/dX2UKGgGR8By3yWzF+/haAdLZGgIR0BqCPYBeXzEdX2UKGgGR8B01ZyZKFqSaAdLaWgIR0BqCWVX3g1ndX2UKGgGR8BUNhAOavzOaAdLUmgIR0BqCbzqbBoFdX2UKGgGR8ByDGbobGWEaAdLYGgIR0BqCy35N47jdX2UKGgGR8BtLpmoR7JGaAdLeGgIR0BqC/i97F85dX2UKGgGR8Bw5EXDWK/EaAdLXWgIR0BqDOax5cC6dX2UKGgGR8BVo+kP+XJHaAdLYWgIR0BqDXVI7NjcdX2UKGgGR8BWRnWvr4WUaAdLY2gIR0BqEMhouf29dX2UKGgGR8B9JsfcN6PbaAdLbmgIR0BqES7I1cdHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}