firasneotax commited on
Commit
9648a4e
·
verified ·
1 Parent(s): e238ae6

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: avsolatorio/GIST-Embedding-v0
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: The project is focused on developing a new employee benefits package designed
13
+ to attract and retain top talent. We will conduct competitive benchmarking to
14
+ understand industry standards, gather employee feedback to identify desired benefits,
15
+ and create a comprehensive package that includes health, wellness, and financial
16
+ incentives.
17
+ - text: A tire manufacturing company created a new belt to be used as part of tread
18
+ cooling during the manufacturing process. Such a belt is not commercially available.
19
+ - text: Covers tasks related to data quality and compliance. This includes handling
20
+ data errors, updating data catalog definitions, and implementing compliance updates.
21
+ The project aims to ensure the accuracy, completeness, and compliance of the company's
22
+ data, thereby increasing its reliability and trustworthiness.
23
+ - text: Involves the development, testing, and maintenance of the Huntress agent software.
24
+ This includes fixing bugs, improving error handling, and adding new functionalities.
25
+ The project ensures the agent software is reliable and effective in protecting
26
+ customer systems.
27
+ - text: This project involved integrating an off-the-shelf software program into the
28
+ company's existing software infrastructure with the goal of improving the customer
29
+ data allocation and retention processes. The design and development of the integrations
30
+ required to succesfully launch the program within the company's existing software
31
+ architecture required the Python programming language. This development required
32
+ the performance of siginificant testing in an iterative nature by the development
33
+ team because Python had never been used to integrate applications within the company's
34
+ platform previously.
35
+ pipeline_tag: text-classification
36
+ inference: true
37
+ ---
38
+
39
+ # SetFit with avsolatorio/GIST-Embedding-v0
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [avsolatorio/GIST-Embedding-v0](https://huggingface.co/avsolatorio/GIST-Embedding-v0) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [avsolatorio/GIST-Embedding-v0](https://huggingface.co/avsolatorio/GIST-Embedding-v0)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 2 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 0 | <ul><li>"A manufacturing corporation undertakes an initiative to restructure its manufacturing organization by designing an organizational structure that will improve the company's business operations"</li><li>"Centers on the production of content for the Brief product. This includes tasks related to drafting insights, creating case studies, and publishing social media posts. The project aims to provide valuable and timely information to Kharon's clients, helping them stay informed about global security topics that impact their commercial activities."</li><li>'The team is developing a comprehensive marketing strategy to increase brand awareness and customer engagement. This includes creating targeted advertising campaigns, optimizing our social media presence, and collaborating with influencers to promote our products. We will also analyze market trends and consumer behavior to refine our approach.'</li></ul> |
70
+ | 1 | <ul><li>"Project focused on enhancing the website's functionality, including tasks related to optimizing search functionality and integrating new features such as bookmarks and table of contents for the web reader. The project aims to provide a seamless online experience for customers by improving the efficiency and speed of our website."</li><li>'Design and create an innovative drug delivery system for cancer treatment compatible with different types of cancer and different patient profiles while minimizing negative impacts on healthy tissues'</li><li>'Develop a new and advanced Natural Language Processing (NLP) algorithm to enhance the capabilities of virtual assistants used in various applications, such as customer service chatbots. This project involved improving the NLP algorithm to be more responsive in the area of complex natural language understanding, including context comprehension, sentiment analysis, and accurate response generation'</li></ul> |
71
+
72
+ ## Uses
73
+
74
+ ### Direct Use for Inference
75
+
76
+ First install the SetFit library:
77
+
78
+ ```bash
79
+ pip install setfit
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+
84
+ ```python
85
+ from setfit import SetFitModel
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SetFitModel.from_pretrained("setfit_model_id")
89
+ # Run inference
90
+ preds = model("A tire manufacturing company created a new belt to be used as part of tread cooling during the manufacturing process. Such a belt is not commercially available.")
91
+ ```
92
+
93
+ <!--
94
+ ### Downstream Use
95
+
96
+ *List how someone could finetune this model on their own dataset.*
97
+ -->
98
+
99
+ <!--
100
+ ### Out-of-Scope Use
101
+
102
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
103
+ -->
104
+
105
+ <!--
106
+ ## Bias, Risks and Limitations
107
+
108
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
109
+ -->
110
+
111
+ <!--
112
+ ### Recommendations
113
+
114
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
115
+ -->
116
+
117
+ ## Training Details
118
+
119
+ ### Training Set Metrics
120
+ | Training set | Min | Median | Max |
121
+ |:-------------|:----|:-------|:----|
122
+ | Word count | 23 | 43.5 | 54 |
123
+
124
+ | Label | Training Sample Count |
125
+ |:------|:----------------------|
126
+ | 0 | 8 |
127
+ | 1 | 16 |
128
+
129
+ ### Training Hyperparameters
130
+ - batch_size: (16, 16)
131
+ - num_epochs: (3, 3)
132
+ - max_steps: -1
133
+ - sampling_strategy: oversampling
134
+ - num_iterations: 20
135
+ - body_learning_rate: (0.0001, 0.0001)
136
+ - head_learning_rate: 0.0001
137
+ - loss: CosineSimilarityLoss
138
+ - distance_metric: cosine_distance
139
+ - margin: 0.25
140
+ - end_to_end: False
141
+ - use_amp: False
142
+ - warmup_proportion: 0.1
143
+ - seed: 42
144
+ - eval_max_steps: -1
145
+ - load_best_model_at_end: False
146
+
147
+ ### Training Results
148
+ | Epoch | Step | Training Loss | Validation Loss |
149
+ |:------:|:----:|:-------------:|:---------------:|
150
+ | 0.0167 | 1 | 0.2764 | - |
151
+ | 0.8333 | 50 | 0.0014 | - |
152
+ | 1.6667 | 100 | 0.0011 | - |
153
+ | 2.5 | 150 | 0.0011 | - |
154
+
155
+ ### Framework Versions
156
+ - Python: 3.9.16
157
+ - SetFit: 1.0.3
158
+ - Sentence Transformers: 3.0.1
159
+ - Transformers: 4.39.0
160
+ - PyTorch: 2.3.1
161
+ - Datasets: 2.19.2
162
+ - Tokenizers: 0.15.2
163
+
164
+ ## Citation
165
+
166
+ ### BibTeX
167
+ ```bibtex
168
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
169
+ doi = {10.48550/ARXIV.2209.11055},
170
+ url = {https://arxiv.org/abs/2209.11055},
171
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
+ title = {Efficient Few-Shot Learning Without Prompts},
174
+ publisher = {arXiv},
175
+ year = {2022},
176
+ copyright = {Creative Commons Attribution 4.0 International}
177
+ }
178
+ ```
179
+
180
+ <!--
181
+ ## Glossary
182
+
183
+ *Clearly define terms in order to be accessible across audiences.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Authors
188
+
189
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Contact
194
+
195
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "avsolatorio/GIST-Embedding-v0",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.39.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e300fffb3d173f7978b3daa91848856ac9dccad833fa9145f6e421b7a182f7
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35004dff48472d1b4b3c7d94f5f75fe1ea4c394640cec0262b715139cae6c1ff
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff