File size: 5,911 Bytes
c8a5fc3 cb971c7 4cbcfab cb971c7 4cbcfab cb971c7 4cbcfab cb971c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
license: apache-2.0
language:
- en
- zh
library_name: transformers
tags:
- mteb
- RAG-reranking
model-index:
- name: LdIR-reranker-large
results:
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 86.50438688414654
- type: mrr
value: 88.91170634920635
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 87.10592353383732
- type: mrr
value: 89.10178571428571
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 39.354813242907133
- type: mrr
value: 39.075793650793655
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 68.83696915006163
- type: mrr
value: 79.77644651857584
---
## Introduction
This model is a downstream task of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) .
We leverage the work of [FlagEmbedding reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ,
and implement with Qwen2-1.5B as pretrained model.
## Usage
```python
from typing import cast, List, Union, Tuple, Dict, Optional
import numpy as np
import torch
from tqdm import tqdm
import transformers
from transformers import AutoTokenizer, PreTrainedModel, PreTrainedTokenizer, DataCollatorWithPadding
from transformers.models.qwen2 import Qwen2Config, Qwen2ForSequenceClassification
from transformers.trainer_pt_utils import LabelSmoother
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
max_len: int = 1024,
) -> Dict:
# Apply prompt templates
input_ids, attention_masks = [], []
for i, source in enumerate(sources):
## system_message
messages = [
{"role": "user",
"content": "\n\n".join(source)}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text])
input_id = model_inputs['input_ids'][0]
attention_mask = model_inputs['attention_mask'][0]
if len(input_id) > max_len:
diff = len(input_id) - max_len
input_id = input_id[:-5-diff] + input_id[-5:]
attention_mask = attention_mask[:-5-diff] + attention_mask[-5:]
assert len(input_id) == max_len
input_ids.append(input_id)
attention_masks.append(attention_mask)
return dict(
input_ids=input_ids,
attention_mask=attention_masks
)
class FlagRerankerCustom:
def __init__(
self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
use_fp16: bool = False
) -> None:
self.tokenizer = tokenizer
self.model = model
self.data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
if torch.cuda.is_available():
self.device = torch.device('cuda')
elif torch.backends.mps.is_available():
self.device = torch.device('mps')
else:
self.device = torch.device('cpu')
use_fp16 = False
if use_fp16:
self.model.half()
self.model = self.model.to(self.device)
self.model.eval()
self.num_gpus = torch.cuda.device_count()
if self.num_gpus > 1:
print(f"----------using {self.num_gpus}*GPUs----------")
self.model = torch.nn.DataParallel(self.model)
@torch.no_grad()
def compute_score(self, sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]], batch_size: int = 64,
max_length: int = 1024) -> List[float]:
if self.num_gpus > 0:
batch_size = batch_size * self.num_gpus
assert isinstance(sentence_pairs, list)
if isinstance(sentence_pairs[0], str):
sentence_pairs = [sentence_pairs]
all_scores = []
for start_index in tqdm(range(0, len(sentence_pairs), batch_size), desc="Compute Scores",
disable=True):
sentences_batch = sentence_pairs[start_index:start_index + batch_size]
inputs = preprocess(sources=sentences_batch, tokenizer=self.tokenizer, max_len=max_length)
inputs = [dict(zip(inputs, t)) for t in zip(*inputs.values())]
inputs = self.data_collator(inputs).to(self.device)
scores = self.model(**inputs, return_dict=True).logits
scores = scores.squeeze()
all_scores.extend(scores.detach().to(torch.float).cpu().numpy().tolist())
if len(all_scores) == 1:
return all_scores[0]
return all_scores
tokenizer = transformers.AutoTokenizer.from_pretrained(
"neofung/LdIR-Qwen2-reranker-1.5B",
padding_side="right",
)
config = Qwen2Config.from_pretrained(
"neofung/LdIR-Qwen2-reranker-1.5B",
trust_remote_code=True,
bf16=True,
)
model = Qwen2ForSequenceClassification.from_pretrained(
"neofung/LdIR-Qwen2-reranker-1.5B",
config = config,
trust_remote_code = True,
)
model = FlagRerankerCustom(model=model, tokenizer=tokenizer, use_fp16=False)
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
model.compute_score(pairs)
# [-2.655318021774292, 11.7670316696167]
``` |