--- {} --- # GGUF quants for [**ContextualAI/Contextual_KTO_Mistral_PairRM**](https://huggingface.co/ContextualAI/Contextual_KTO_Mistral_PairRM) using [llama.cpp](https://github.com/ggerganov/llama.cpp) **Terms of Use**: Please check the [**original model**](https://huggingface.co/ContextualAI/Contextual_KTO_Mistral_PairRM) cthulhu ## Quants * `q2_k`: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors. * `q3_k_s`: Uses Q3_K for all tensors * `q3_k_m`: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K * `q3_k_l`: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K * `q4_0`: Original quant method, 4-bit. * `q4_1`: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. * `q4_k_s`: Uses Q4_K for all tensors * `q4_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K * `q5_0`: Higher accuracy, higher resource usage and slower inference. * `q5_1`: Even higher accuracy, resource usage and slower inference. * `q5_k_s`: Uses Q5_K for all tensors * `q5_k_m`: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K * `q6_k`: Uses Q8_K for all tensors * `q8_0`: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.