--- license: mit tags: - deepseek - fp8 - vllm base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers --- # DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic ## Model Overview - **Model Architecture:** Qwen2ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 2/5/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B). ### Model Optimizations This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization. ## Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams number_gpus = 1 model_name = "neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-dynamic" tokenizer = AutoTokenizer.from_pretrained(model_name) sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot import os # Load model model_stub = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" model_name = model_stub.split("/")[-1] model = AutoModelForCausalLM.from_pretrained( model_stub, torch_dtype="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_stub) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"], ) # Apply quantization oneshot( model=model, recipe=recipe, ) # Save to disk in compressed-tensors format save_path = model_name + "-FP8-dynamic model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") ``` ## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` OpenLLM Leaderboard V2: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ --apply_chat_template \ --fewshot_as_multiturn \ --tasks leaderboard \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` ### Accuracy
Category | Metric | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic | Recovery |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 37.20 | 37.71 | 101.4% |
GSM8K (Strict-Match, 5-shot) | 69.98 | 68.99 | 98.6% | |
HellaSwag (Acc-Norm, 10-shot) | 43.86 | 43.61 | 99.4% | |
MMLU (Acc, 5-shot) | 37.38 | 37.22 | 99.6% | |
TruthfulQA (MC2, 0-shot) | 45.21 | 44.77 | 99.0% | |
Winogrande (Acc, 5-shot) | 54.30 | 54.62 | 100.6% | |
Average Score | 47.99 | 47.82 | 99.7% | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 34.37 | 34.91 | 101.6% |
BBH (Acc-Norm, 3-shot) | 34.44 | 34.40 | 99.9% | |
Math-Hard (Exact-Match, 4-shot) | 0.00 | 0.00 | --- | |
GPQA (Acc-Norm, 0-shot) | 24.67 | 25.16 | 102.0% | |
MUSR (Acc-Norm, 0-shot) | 35.82 | 36.61 | 102.2% | |
MMLU-Pro (Acc, 5-shot) | 11.80 | 11.69 | 99.1% | |
Average Score | 23.52 | 23.79 | 101.2% | |
Coding | HumanEval (pass@1) | 37.90 | 36.40 | 96.0% |
HumanEval (pass@10) | 61.30 | 61.30 | 100.0% | |
HumanEval+ (pass@10) | 33.00 | 32.60 | 98.8% | |
HumanEval+ (pass@10) | 55.90 | 56.30 | 100.7% |
Instruction Following 256 / 128 |
Multi-turn Chat 512 / 256 |
Docstring Generation 768 / 128 |
RAG 1024 / 128 |
Code Completion 256 / 1024 |
Code Fixing 1024 / 1024 |
Large Summarization 4096 / 512 |
Large RAG 10240 / 1536 |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hardware | Model | Average cost reduction | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD | Latency (s) | QPD |
A6000x1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | --- | 0.8 | 5667 | 1.6 | 2776 | 0.8 | 5515 | 0.8 | 5466 | 6.4 | 705 | 6.5 | 697 | 3.5 | 1295 | 18.3 | 246 |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8 | 1.14 | 0.7 | 6635 | 1.3 | 3340 | 0.7 | 6396 | 0.7 | 6343 | 5.3 | 845 | 5.4 | 832 | 2.9 | 1547 | 21.3 | 211 | |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | 1.38 | 0.5 | 8293 | 1.1 | 4184 | 0.6 | 7976 | 0.6 | 7504 | 4.3 | 1051 | 4.4 | 1033 | 2.5 | 1819 | 21.1 | 213 | |
A100x1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | --- | 0.6 | 3359 | 1.2 | 1654 | 0.6 | 3286 | 0.6 | 3241 | 4.7 | 424 | 4.9 | 411 | 2.6 | 778 | 21.1 | 95 |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8 | 1.05 | 0.6 | 3531 | 1.1 | 1807 | 0.6 | 3427 | 0.6 | 3480 | 4.5 | 448 | 4.5 | 447 | 2.4 | 842 | 23.5 | 86 | |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | 1.03 | 0.6 | 3469 | 1.1 | 1751 | 0.6 | 3403 | 0.6 | 3407 | 4.5 | 447 | 4.6 | 435 | 2.5 | 815 | 23.3 | 86 | |
H100x1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | --- | 0.4 | 2604 | 0.8 | 1299 | 0.4 | 2543 | 0.4 | 2551 | 3.3 | 330 | 3.4 | 326 | 1.8 | 612 | 14.0 | 78 |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic | 1.04 | 0.4 | 2694 | 0.8 | 1364 | 0.4 | 2670 | 0.4 | 2639 | 3.2 | 347 | 3.2 | 341 | 1.6 | 673 | 14.1 | 78 | |
neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 | 0.84 | 0.5 | 2111 | 1.0 | 1065 | 0.5 | 2068 | 0.5 | 2119 | 4.1 | 270 | 4.1 | 265 | 2.1 | 530 | 15.1 | 73 |