--- language: - en pipeline_tag: text-generation license: apache-2.0 license_link: https://www.apache.org/licenses/LICENSE-2.0 --- # Mistral-7B-Instruct-v0.3-quantized.w8a16 ## Model Overview - **Model Architecture:** Mistral - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 7/10/2024 - **Version:** 1.0 - **License(s):** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Model Developers:** Neural Magic Quantized version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3). It achieves an average score of 66.43 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 66.74. ### Model Optimizations This model was obtained by quantizing the weights of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) to INT8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 1% damping factor and 256 sequences of 8,192 random tokens. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False) llm = LLM(model=model_id) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ### Use with transformers This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format. The following example contemplates how the model can be used using the `generate()` function. ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## Creation This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below. Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ. ```python from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import random model_id = "mistralai/Mistral-7B-Instruct-v0.3" num_samples = 256 max_seq_len = 8192 tokenizer = AutoTokenizer.from_pretrained(model_id) max_token_id = len(tokenizer.get_vocab()) - 1 examples = [] for _ in range(num_samples): examples.append( { "input_ids": [random.randint(0, max_token_id) for _ in range(max_seq_len)], "attention_mask": max_seq_len*[1], } ) quantize_config = BaseQuantizeConfig( bits=8, group_size=-1, desc_act=False, model_file_base_name="model", damp_percent=0.01, ) model = AutoGPTQForCausalLM.from_pretrained( model_id, quantize_config, device_map="auto", ) model.quantize(examples) model.save_pretrained("Mistral-7B-Instruct-v0.3-quantized.w8a16") ``` ## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Mistral-7B-Instruct-v0.3-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-quantized.w8a16(this model) | Recovery |
MMLU (5-shot) | 61.84 | 62.06 | 100.3% |
ARC Challenge (25-shot) | 63.74 | 64.26 | 100.8% |
GSM-8K (5-shot, strict-match) | 49.28 | 50.42 | 102.3% |
Hellaswag (10-shot) | 84.84 | 84.78 | 99.9% |
Winogrande (5-shot) | 79.56 | 79.48 | 99.9% |
TruthfulQA (0-shot) | 59.33 | 59.48 | 100.3% |
Average | 66.43 | 66.74 | 100.5% |