diff --git "a/results_2024-07-11T17-50-48.081476.json" "b/results_2024-07-11T17-50-48.081476.json" new file mode 100644--- /dev/null +++ "b/results_2024-07-11T17-50-48.081476.json" @@ -0,0 +1,3862 @@ +{ + "results": { + "openllm": { + " ": " ", + "alias": "Open LLM Leaderboard" + }, + "arc_challenge": { + "alias": " - arc_challenge", + "acc,none": 0.5955631399317406, + "acc_stderr,none": 0.01434203648343618, + "acc_norm,none": 0.6262798634812287, + "acc_norm_stderr,none": 0.01413770860175908 + }, + "gsm8k": { + "alias": " - gsm8k", + "exact_match,strict-match": 0.5989385898407885, + "exact_match_stderr,strict-match": 0.013500158922245544, + "exact_match,flexible-extract": 0.6990144048521607, + "exact_match_stderr,flexible-extract": 0.012634504465211183 + }, + "hellaswag": { + "alias": " - hellaswag", + "acc,none": 0.609838677554272, + "acc_stderr,none": 0.0048678939272581625, + "acc_norm,none": 0.8123879705238001, + "acc_norm_stderr,none": 0.0038960417231669268 + }, + "mmlu": { + "acc,none": 0.7031049708018801, + "acc_stderr,none": 0.0036674176940399285, + "alias": " - mmlu" + }, + "mmlu_humanities": { + "acc,none": 0.6446333687566419, + "acc_stderr,none": 0.006628123312720251, + "alias": " - humanities" + }, + "mmlu_formal_logic": { + "alias": " - formal_logic", + "acc,none": 0.5396825396825397, + "acc_stderr,none": 0.04458029125470973 + }, + "mmlu_high_school_european_history": { + "alias": " - high_school_european_history", + "acc,none": 0.8121212121212121, + "acc_stderr,none": 0.03050193405942914 + }, + "mmlu_high_school_us_history": { + "alias": " - high_school_us_history", + "acc,none": 0.8431372549019608, + "acc_stderr,none": 0.025524722324553335 + }, + "mmlu_high_school_world_history": { + "alias": " - high_school_world_history", + "acc,none": 0.8607594936708861, + "acc_stderr,none": 0.022535526352692712 + }, + "mmlu_international_law": { + "alias": " - international_law", + "acc,none": 0.8347107438016529, + "acc_stderr,none": 0.03390780612972776 + }, + "mmlu_jurisprudence": { + "alias": " - jurisprudence", + "acc,none": 0.8333333333333334, + "acc_stderr,none": 0.03602814176392645 + }, + "mmlu_logical_fallacies": { + "alias": " - logical_fallacies", + "acc,none": 0.7975460122699386, + "acc_stderr,none": 0.031570650789119005 + }, + "mmlu_moral_disputes": { + "alias": " - moral_disputes", + "acc,none": 0.7745664739884393, + "acc_stderr,none": 0.022497230190967558 + }, + "mmlu_moral_scenarios": { + "alias": " - moral_scenarios", + "acc,none": 0.47262569832402235, + "acc_stderr,none": 0.016697420650642752 + }, + "mmlu_philosophy": { + "alias": " - philosophy", + "acc,none": 0.7781350482315113, + "acc_stderr,none": 0.02359885829286305 + }, + "mmlu_prehistory": { + "alias": " - prehistory", + "acc,none": 0.7870370370370371, + "acc_stderr,none": 0.02277971908873339 + }, + "mmlu_professional_law": { + "alias": " - professional_law", + "acc,none": 0.5260756192959583, + "acc_stderr,none": 0.012752858346533134 + }, + "mmlu_world_religions": { + "alias": " - world_religions", + "acc,none": 0.8128654970760234, + "acc_stderr,none": 0.029913127232368032 + }, + "mmlu_other": { + "acc,none": 0.7521725136787898, + "acc_stderr,none": 0.007482454564765459, + "alias": " - other" + }, + "mmlu_business_ethics": { + "alias": " - business_ethics", + "acc,none": 0.77, + "acc_stderr,none": 0.04229525846816506 + }, + "mmlu_clinical_knowledge": { + "alias": " - clinical_knowledge", + "acc,none": 0.7584905660377359, + "acc_stderr,none": 0.026341480371118362 + }, + "mmlu_college_medicine": { + "alias": " - college_medicine", + "acc,none": 0.6878612716763006, + "acc_stderr,none": 0.03533133389323657 + }, + "mmlu_global_facts": { + "alias": " - global_facts", + "acc,none": 0.48, + "acc_stderr,none": 0.050211673156867795 + }, + "mmlu_human_aging": { + "alias": " - human_aging", + "acc,none": 0.7488789237668162, + "acc_stderr,none": 0.02910522083322462 + }, + "mmlu_management": { + "alias": " - management", + "acc,none": 0.8058252427184466, + "acc_stderr,none": 0.03916667762822583 + }, + "mmlu_marketing": { + "alias": " - marketing", + "acc,none": 0.905982905982906, + "acc_stderr,none": 0.019119892798924974 + }, + "mmlu_medical_genetics": { + "alias": " - medical_genetics", + "acc,none": 0.81, + "acc_stderr,none": 0.03942772444036623 + }, + "mmlu_miscellaneous": { + "alias": " - miscellaneous", + "acc,none": 0.8544061302681992, + "acc_stderr,none": 0.012612475800423456 + }, + "mmlu_nutrition": { + "alias": " - nutrition", + "acc,none": 0.7875816993464052, + "acc_stderr,none": 0.023420375478296118 + }, + "mmlu_professional_accounting": { + "alias": " - professional_accounting", + "acc,none": 0.5531914893617021, + "acc_stderr,none": 0.0296582350976669 + }, + "mmlu_professional_medicine": { + "alias": " - professional_medicine", + "acc,none": 0.6985294117647058, + "acc_stderr,none": 0.027875982114273168 + }, + "mmlu_virology": { + "alias": " - virology", + "acc,none": 0.5602409638554217, + "acc_stderr,none": 0.03864139923699121 + }, + "mmlu_social_sciences": { + "acc,none": 0.8046798830029249, + "acc_stderr,none": 0.007045647830357574, + "alias": " - social sciences" + }, + "mmlu_econometrics": { + "alias": " - econometrics", + "acc,none": 0.631578947368421, + "acc_stderr,none": 0.04537815354939391 + }, + "mmlu_high_school_geography": { + "alias": " - high_school_geography", + "acc,none": 0.8838383838383839, + "acc_stderr,none": 0.022828881775249377 + }, + "mmlu_high_school_government_and_politics": { + "alias": " - high_school_government_and_politics", + "acc,none": 0.9067357512953368, + "acc_stderr,none": 0.020986854593289705 + }, + "mmlu_high_school_macroeconomics": { + "alias": " - high_school_macroeconomics", + "acc,none": 0.7512820512820513, + "acc_stderr,none": 0.021916957709213796 + }, + "mmlu_high_school_microeconomics": { + "alias": " - high_school_microeconomics", + "acc,none": 0.8277310924369747, + "acc_stderr,none": 0.024528664971305424 + }, + "mmlu_high_school_psychology": { + "alias": " - high_school_psychology", + "acc,none": 0.8733944954128441, + "acc_stderr,none": 0.014257128686165169 + }, + "mmlu_human_sexuality": { + "alias": " - human_sexuality", + "acc,none": 0.8091603053435115, + "acc_stderr,none": 0.03446513350752596 + }, + "mmlu_professional_psychology": { + "alias": " - professional_psychology", + "acc,none": 0.7369281045751634, + "acc_stderr,none": 0.017812676542320657 + }, + "mmlu_public_relations": { + "alias": " - public_relations", + "acc,none": 0.7363636363636363, + "acc_stderr,none": 0.04220224692971987 + }, + "mmlu_security_studies": { + "alias": " - security_studies", + "acc,none": 0.7673469387755102, + "acc_stderr,none": 0.02704925791589618 + }, + "mmlu_sociology": { + "alias": " - sociology", + "acc,none": 0.8706467661691543, + "acc_stderr,none": 0.023729830881018515 + }, + "mmlu_us_foreign_policy": { + "alias": " - us_foreign_policy", + "acc,none": 0.87, + "acc_stderr,none": 0.033799766898963086 + }, + "mmlu_stem": { + "acc,none": 0.6428797970187123, + "acc_stderr,none": 0.008203846896313965, + "alias": " - stem" + }, + "mmlu_abstract_algebra": { + "alias": " - abstract_algebra", + "acc,none": 0.48, + "acc_stderr,none": 0.050211673156867795 + }, + "mmlu_anatomy": { + "alias": " - anatomy", + "acc,none": 0.5925925925925926, + "acc_stderr,none": 0.042446332383532286 + }, + "mmlu_astronomy": { + "alias": " - astronomy", + "acc,none": 0.8026315789473685, + "acc_stderr,none": 0.03238981601699397 + }, + "mmlu_college_biology": { + "alias": " - college_biology", + "acc,none": 0.8125, + "acc_stderr,none": 0.032639560491693344 + }, + "mmlu_college_chemistry": { + "alias": " - college_chemistry", + "acc,none": 0.5, + "acc_stderr,none": 0.050251890762960605 + }, + "mmlu_college_computer_science": { + "alias": " - college_computer_science", + "acc,none": 0.64, + "acc_stderr,none": 0.04824181513244218 + }, + "mmlu_college_mathematics": { + "alias": " - college_mathematics", + "acc,none": 0.38, + "acc_stderr,none": 0.04878317312145633 + }, + "mmlu_college_physics": { + "alias": " - college_physics", + "acc,none": 0.4411764705882353, + "acc_stderr,none": 0.049406356306056595 + }, + "mmlu_computer_security": { + "alias": " - computer_security", + "acc,none": 0.78, + "acc_stderr,none": 0.04163331998932262 + }, + "mmlu_conceptual_physics": { + "alias": " - conceptual_physics", + "acc,none": 0.7191489361702128, + "acc_stderr,none": 0.02937917046412481 + }, + "mmlu_electrical_engineering": { + "alias": " - electrical_engineering", + "acc,none": 0.7586206896551724, + "acc_stderr,none": 0.03565998174135302 + }, + "mmlu_elementary_mathematics": { + "alias": " - elementary_mathematics", + "acc,none": 0.6243386243386243, + "acc_stderr,none": 0.02494236893115978 + }, + "mmlu_high_school_biology": { + "alias": " - high_school_biology", + "acc,none": 0.864516129032258, + "acc_stderr,none": 0.019469334586486902 + }, + "mmlu_high_school_chemistry": { + "alias": " - high_school_chemistry", + "acc,none": 0.6354679802955665, + "acc_stderr,none": 0.0338640574606209 + }, + "mmlu_high_school_computer_science": { + "alias": " - high_school_computer_science", + "acc,none": 0.74, + "acc_stderr,none": 0.0440844002276808 + }, + "mmlu_high_school_mathematics": { + "alias": " - high_school_mathematics", + "acc,none": 0.5074074074074074, + "acc_stderr,none": 0.0304821923951915 + }, + "mmlu_high_school_physics": { + "alias": " - high_school_physics", + "acc,none": 0.4900662251655629, + "acc_stderr,none": 0.04081677107248437 + }, + "mmlu_high_school_statistics": { + "alias": " - high_school_statistics", + "acc,none": 0.6435185185185185, + "acc_stderr,none": 0.032664783315272714 + }, + "mmlu_machine_learning": { + "alias": " - machine_learning", + "acc,none": 0.4375, + "acc_stderr,none": 0.04708567521880525 + }, + "truthfulqa_gen": { + "alias": " - truthfulqa_gen", + "bleu_max,none": 20.093141383074126, + "bleu_max_stderr,none": 0.7674708727449174, + "bleu_acc,none": 0.4981640146878825, + "bleu_acc_stderr,none": 0.017503383046877066, + "bleu_diff,none": 5.514451116317338, + "bleu_diff_stderr,none": 0.707963630379558, + "rouge1_max,none": 43.71945472469494, + "rouge1_max_stderr,none": 0.9285679841034437, + "rouge1_acc,none": 0.5250917992656059, + "rouge1_acc_stderr,none": 0.017481446804103993, + "rouge1_diff,none": 7.180570525369235, + "rouge1_diff_stderr,none": 1.0338082939518565, + "rouge2_max,none": 30.409106400754577, + "rouge2_max_stderr,none": 1.0240150293546637, + "rouge2_acc,none": 0.43451652386780903, + "rouge2_acc_stderr,none": 0.017352738749259557, + "rouge2_diff,none": 7.515663779557191, + "rouge2_diff_stderr,none": 1.1049877019338414, + "rougeL_max,none": 40.779159784653935, + "rougeL_max_stderr,none": 0.9436650478795271, + "rougeL_acc,none": 0.5140758873929009, + "rougeL_acc_stderr,none": 0.017496563717042796, + "rougeL_diff,none": 7.052881861044437, + "rougeL_diff_stderr,none": 1.043772558534271 + }, + "truthfulqa_mc1": { + "alias": " - truthfulqa_mc1", + "acc,none": 0.397796817625459, + "acc_stderr,none": 0.017133934248559655 + }, + "truthfulqa_mc2": { + "alias": " - truthfulqa_mc2", + "acc,none": 0.5691656979068941, + "acc_stderr,none": 0.01543514656981664 + }, + "winogrande": { + "alias": " - winogrande", + "acc,none": 0.7521704814522494, + "acc_stderr,none": 0.012134386019865344 + } + }, + "groups": { + "mmlu": { + "acc,none": 0.7031049708018801, + "acc_stderr,none": 0.0036674176940399285, + "alias": " - mmlu" + }, + "mmlu_humanities": { + "acc,none": 0.6446333687566419, + "acc_stderr,none": 0.006628123312720251, + "alias": " - humanities" + }, + "mmlu_other": { + "acc,none": 0.7521725136787898, + "acc_stderr,none": 0.007482454564765459, + "alias": " - other" + }, + "mmlu_social_sciences": { + "acc,none": 0.8046798830029249, + "acc_stderr,none": 0.007045647830357574, + "alias": " - social sciences" + }, + "mmlu_stem": { + "acc,none": 0.6428797970187123, + "acc_stderr,none": 0.008203846896313965, + "alias": " - stem" + } + }, + "group_subtasks": { + "mmlu_humanities": [ + "mmlu_prehistory", + "mmlu_moral_scenarios", + "mmlu_moral_disputes", + "mmlu_philosophy", + "mmlu_high_school_world_history", + "mmlu_logical_fallacies", + "mmlu_formal_logic", + "mmlu_high_school_us_history", + "mmlu_high_school_european_history", + "mmlu_professional_law", + "mmlu_jurisprudence", + "mmlu_international_law", + "mmlu_world_religions" + ], + "mmlu_social_sciences": [ + "mmlu_high_school_psychology", + "mmlu_us_foreign_policy", + "mmlu_professional_psychology", + "mmlu_human_sexuality", + "mmlu_public_relations", + "mmlu_security_studies", + "mmlu_sociology", + "mmlu_high_school_microeconomics", + "mmlu_high_school_macroeconomics", + "mmlu_high_school_government_and_politics", + "mmlu_econometrics", + "mmlu_high_school_geography" + ], + "mmlu_other": [ + "mmlu_professional_accounting", + "mmlu_global_facts", + "mmlu_college_medicine", + "mmlu_virology", + "mmlu_human_aging", + "mmlu_professional_medicine", + "mmlu_medical_genetics", + "mmlu_business_ethics", + "mmlu_management", + "mmlu_miscellaneous", + "mmlu_nutrition", + "mmlu_marketing", + "mmlu_clinical_knowledge" + ], + "mmlu_stem": [ + "mmlu_anatomy", + "mmlu_college_physics", + "mmlu_computer_security", + "mmlu_conceptual_physics", + "mmlu_high_school_chemistry", + "mmlu_college_computer_science", + "mmlu_high_school_biology", + "mmlu_high_school_mathematics", + "mmlu_high_school_statistics", + "mmlu_college_chemistry", + "mmlu_electrical_engineering", + "mmlu_college_mathematics", + "mmlu_college_biology", + "mmlu_abstract_algebra", + "mmlu_elementary_mathematics", + "mmlu_high_school_physics", + "mmlu_high_school_computer_science", + "mmlu_machine_learning", + "mmlu_astronomy" + ], + "mmlu": [ + "mmlu_stem", + "mmlu_other", + "mmlu_social_sciences", + "mmlu_humanities" + ], + "openllm": [ + "arc_challenge", + "hellaswag", + "truthfulqa_mc2", + "truthfulqa_mc1", + "truthfulqa_gen", + "mmlu", + "winogrande", + "gsm8k" + ] + }, + "configs": { + "arc_challenge": { + "task": "arc_challenge", + "tag": [ + "ai2_arc" + ], + "dataset_path": "allenai/ai2_arc", + "dataset_name": "ARC-Challenge", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "fewshot_split": "validation", + "doc_to_text": "Question: {{question}}\nAnswer:", + "doc_to_target": "{{choices.label.index(answerKey)}}", + "doc_to_choice": "{{choices.text}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 25, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "acc_norm", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "Question: {{question}}\nAnswer:", + "metadata": { + "version": 1.0 + } + }, + "gsm8k": { + "task": "gsm8k", + "tag": [ + "math_word_problems" + ], + "dataset_path": "gsm8k", + "dataset_name": "main", + "training_split": "train", + "test_split": "test", + "fewshot_split": "train", + "doc_to_text": "Question: {{question}}\nAnswer:", + "doc_to_target": "{{answer}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 5, + "metric_list": [ + { + "metric": "exact_match", + "aggregation": "mean", + "higher_is_better": true, + "ignore_case": true, + "ignore_punctuation": false, + "regexes_to_ignore": [ + ",", + "\\$", + "(?s).*#### ", + "\\.$" + ] + } + ], + "output_type": "generate_until", + "generation_kwargs": { + "until": [ + "Question:", + "", + "<|im_end|>" + ], + "do_sample": false, + "temperature": 0.0 + }, + "repeats": 1, + "filter_list": [ + { + "name": "strict-match", + "filter": [ + { + "function": "regex", + "regex_pattern": "#### (\\-?[0-9\\.\\,]+)" + }, + { + "function": "take_first" + } + ] + }, + { + "name": "flexible-extract", + "filter": [ + { + "function": "regex", + "group_select": -1, + "regex_pattern": "(-?[$0-9.,]{2,})|(-?[0-9]+)" + }, + { + "function": "take_first" + } + ] + } + ], + "should_decontaminate": false, + "metadata": { + "version": 3.0 + } + }, + "hellaswag": { + "task": "hellaswag", + "tag": [ + "multiple_choice" + ], + "dataset_path": "hellaswag", + "dataset_kwargs": { + "trust_remote_code": true + }, + "training_split": "train", + "validation_split": "validation", + "fewshot_split": "train", + "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n", + "doc_to_text": "{{query}}", + "doc_to_target": "{{label}}", + "doc_to_choice": "choices", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 10, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "acc_norm", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "mmlu_abstract_algebra": { + "task": "mmlu_abstract_algebra", + "task_alias": "abstract_algebra", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "abstract_algebra", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_anatomy": { + "task": "mmlu_anatomy", + "task_alias": "anatomy", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "anatomy", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about anatomy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_astronomy": { + "task": "mmlu_astronomy", + "task_alias": "astronomy", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "astronomy", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about astronomy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_business_ethics": { + "task": "mmlu_business_ethics", + "task_alias": "business_ethics", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "business_ethics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about business ethics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_clinical_knowledge": { + "task": "mmlu_clinical_knowledge", + "task_alias": "clinical_knowledge", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "clinical_knowledge", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_biology": { + "task": "mmlu_college_biology", + "task_alias": "college_biology", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_biology", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college biology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_chemistry": { + "task": "mmlu_college_chemistry", + "task_alias": "college_chemistry", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_chemistry", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_computer_science": { + "task": "mmlu_college_computer_science", + "task_alias": "college_computer_science", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_computer_science", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college computer science.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_mathematics": { + "task": "mmlu_college_mathematics", + "task_alias": "college_mathematics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_mathematics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_medicine": { + "task": "mmlu_college_medicine", + "task_alias": "college_medicine", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_medicine", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college medicine.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_physics": { + "task": "mmlu_college_physics", + "task_alias": "college_physics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_physics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_computer_security": { + "task": "mmlu_computer_security", + "task_alias": "computer_security", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "computer_security", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about computer security.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_conceptual_physics": { + "task": "mmlu_conceptual_physics", + "task_alias": "conceptual_physics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "conceptual_physics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_econometrics": { + "task": "mmlu_econometrics", + "task_alias": "econometrics", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "econometrics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about econometrics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_electrical_engineering": { + "task": "mmlu_electrical_engineering", + "task_alias": "electrical_engineering", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "electrical_engineering", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_elementary_mathematics": { + "task": "mmlu_elementary_mathematics", + "task_alias": "elementary_mathematics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "elementary_mathematics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_formal_logic": { + "task": "mmlu_formal_logic", + "task_alias": "formal_logic", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "formal_logic", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about formal logic.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_global_facts": { + "task": "mmlu_global_facts", + "task_alias": "global_facts", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "global_facts", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about global facts.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_biology": { + "task": "mmlu_high_school_biology", + "task_alias": "high_school_biology", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_biology", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school biology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_chemistry": { + "task": "mmlu_high_school_chemistry", + "task_alias": "high_school_chemistry", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_chemistry", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_computer_science": { + "task": "mmlu_high_school_computer_science", + "task_alias": "high_school_computer_science", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_computer_science", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_european_history": { + "task": "mmlu_high_school_european_history", + "task_alias": "high_school_european_history", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_european_history", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school european history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_geography": { + "task": "mmlu_high_school_geography", + "task_alias": "high_school_geography", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_geography", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school geography.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_government_and_politics": { + "task": "mmlu_high_school_government_and_politics", + "task_alias": "high_school_government_and_politics", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_government_and_politics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_macroeconomics": { + "task": "mmlu_high_school_macroeconomics", + "task_alias": "high_school_macroeconomics", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_macroeconomics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_mathematics": { + "task": "mmlu_high_school_mathematics", + "task_alias": "high_school_mathematics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_mathematics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_microeconomics": { + "task": "mmlu_high_school_microeconomics", + "task_alias": "high_school_microeconomics", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_microeconomics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_physics": { + "task": "mmlu_high_school_physics", + "task_alias": "high_school_physics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_physics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_psychology": { + "task": "mmlu_high_school_psychology", + "task_alias": "high_school_psychology", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_psychology", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_statistics": { + "task": "mmlu_high_school_statistics", + "task_alias": "high_school_statistics", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_statistics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_us_history": { + "task": "mmlu_high_school_us_history", + "task_alias": "high_school_us_history", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_us_history", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school us history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_world_history": { + "task": "mmlu_high_school_world_history", + "task_alias": "high_school_world_history", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_world_history", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school world history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_human_aging": { + "task": "mmlu_human_aging", + "task_alias": "human_aging", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "human_aging", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about human aging.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_human_sexuality": { + "task": "mmlu_human_sexuality", + "task_alias": "human_sexuality", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "human_sexuality", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_international_law": { + "task": "mmlu_international_law", + "task_alias": "international_law", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "international_law", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about international law.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_jurisprudence": { + "task": "mmlu_jurisprudence", + "task_alias": "jurisprudence", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "jurisprudence", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_logical_fallacies": { + "task": "mmlu_logical_fallacies", + "task_alias": "logical_fallacies", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "logical_fallacies", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_machine_learning": { + "task": "mmlu_machine_learning", + "task_alias": "machine_learning", + "tag": "mmlu_stem_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "machine_learning", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about machine learning.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_management": { + "task": "mmlu_management", + "task_alias": "management", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "management", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about management.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_marketing": { + "task": "mmlu_marketing", + "task_alias": "marketing", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "marketing", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about marketing.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_medical_genetics": { + "task": "mmlu_medical_genetics", + "task_alias": "medical_genetics", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "medical_genetics", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_miscellaneous": { + "task": "mmlu_miscellaneous", + "task_alias": "miscellaneous", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "miscellaneous", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_moral_disputes": { + "task": "mmlu_moral_disputes", + "task_alias": "moral_disputes", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "moral_disputes", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_moral_scenarios": { + "task": "mmlu_moral_scenarios", + "task_alias": "moral_scenarios", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "moral_scenarios", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_nutrition": { + "task": "mmlu_nutrition", + "task_alias": "nutrition", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "nutrition", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about nutrition.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_philosophy": { + "task": "mmlu_philosophy", + "task_alias": "philosophy", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "philosophy", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about philosophy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_prehistory": { + "task": "mmlu_prehistory", + "task_alias": "prehistory", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "prehistory", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about prehistory.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_accounting": { + "task": "mmlu_professional_accounting", + "task_alias": "professional_accounting", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_accounting", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_law": { + "task": "mmlu_professional_law", + "task_alias": "professional_law", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_law", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional law.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_medicine": { + "task": "mmlu_professional_medicine", + "task_alias": "professional_medicine", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_medicine", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_psychology": { + "task": "mmlu_professional_psychology", + "task_alias": "professional_psychology", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_psychology", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_public_relations": { + "task": "mmlu_public_relations", + "task_alias": "public_relations", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "public_relations", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about public relations.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_security_studies": { + "task": "mmlu_security_studies", + "task_alias": "security_studies", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "security_studies", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about security studies.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_sociology": { + "task": "mmlu_sociology", + "task_alias": "sociology", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "sociology", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about sociology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_us_foreign_policy": { + "task": "mmlu_us_foreign_policy", + "task_alias": "us_foreign_policy", + "tag": "mmlu_social_sciences_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "us_foreign_policy", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_virology": { + "task": "mmlu_virology", + "task_alias": "virology", + "tag": "mmlu_other_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "virology", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about virology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_world_religions": { + "task": "mmlu_world_religions", + "task_alias": "world_religions", + "tag": "mmlu_humanities_tasks", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "world_religions", + "dataset_kwargs": { + "trust_remote_code": true + }, + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about world religions.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "truthfulqa_gen": { + "task": "truthfulqa_gen", + "tag": [ + "truthfulqa" + ], + "dataset_path": "truthful_qa", + "dataset_name": "generation", + "validation_split": "validation", + "process_docs": "def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:\n return dataset.map(preprocess_function)\n", + "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question}}", + "doc_to_target": " ", + "process_results": "def process_results_gen(doc, results):\n completion = results[0]\n true_refs, false_refs = doc[\"correct_answers\"], doc[\"incorrect_answers\"]\n all_refs = true_refs + false_refs\n\n # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.\n\n # # BLEURT\n # bleurt_scores_true = self.bleurt.compute(\n # predictions=[completion] * len(true_refs), references=true_refs\n # )[\"scores\"]\n # bleurt_scores_false = self.bleurt.compute(\n # predictions=[completion] * len(false_refs), references=false_refs\n # )[\"scores\"]\n # bleurt_correct = max(bleurt_scores_true)\n # bleurt_incorrect = max(bleurt_scores_false)\n # bleurt_max = bleurt_correct\n # bleurt_diff = bleurt_correct - bleurt_incorrect\n # bleurt_acc = int(bleurt_correct > bleurt_incorrect)\n\n # BLEU\n bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]\n bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])\n bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])\n bleu_max = bleu_correct\n bleu_diff = bleu_correct - bleu_incorrect\n bleu_acc = int(bleu_correct > bleu_incorrect)\n\n # ROUGE-N\n rouge_scores = [rouge([ref], [completion]) for ref in all_refs]\n # ROUGE-1\n rouge1_scores = [score[\"rouge1\"] for score in rouge_scores]\n rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])\n rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])\n rouge1_max = rouge1_correct\n rouge1_diff = rouge1_correct - rouge1_incorrect\n rouge1_acc = int(rouge1_correct > rouge1_incorrect)\n # ROUGE-2\n rouge2_scores = [score[\"rouge2\"] for score in rouge_scores]\n rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])\n rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])\n rouge2_max = rouge2_correct\n rouge2_diff = rouge2_correct - rouge2_incorrect\n rouge2_acc = int(rouge2_correct > rouge2_incorrect)\n # ROUGE-L\n rougeL_scores = [score[\"rougeLsum\"] for score in rouge_scores]\n rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])\n rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])\n rougeL_max = rougeL_correct\n rougeL_diff = rougeL_correct - rougeL_incorrect\n rougeL_acc = int(rougeL_correct > rougeL_incorrect)\n\n return {\n # \"bleurt_max\": bleurt_max,\n # \"bleurt_acc\": bleurt_acc,\n # \"bleurt_diff\": bleurt_diff,\n \"bleu_max\": bleu_max,\n \"bleu_acc\": bleu_acc,\n \"bleu_diff\": bleu_diff,\n \"rouge1_max\": rouge1_max,\n \"rouge1_acc\": rouge1_acc,\n \"rouge1_diff\": rouge1_diff,\n \"rouge2_max\": rouge2_max,\n \"rouge2_acc\": rouge2_acc,\n \"rouge2_diff\": rouge2_diff,\n \"rougeL_max\": rougeL_max,\n \"rougeL_acc\": rougeL_acc,\n \"rougeL_diff\": rougeL_diff,\n }\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 0, + "metric_list": [ + { + "metric": "bleu_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "bleu_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "bleu_diff", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge1_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge1_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge1_diff", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge2_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge2_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge2_diff", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rougeL_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rougeL_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rougeL_diff", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "generate_until", + "generation_kwargs": { + "until": [ + "\n\n" + ], + "do_sample": false + }, + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "question", + "metadata": { + "version": 3.0 + } + }, + "truthfulqa_mc1": { + "task": "truthfulqa_mc1", + "tag": [ + "truthfulqa" + ], + "dataset_path": "truthful_qa", + "dataset_name": "multiple_choice", + "validation_split": "validation", + "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", + "doc_to_target": 0, + "doc_to_choice": "{{mc1_targets.choices}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 0, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "question", + "metadata": { + "version": 2.0 + } + }, + "truthfulqa_mc2": { + "task": "truthfulqa_mc2", + "tag": [ + "truthfulqa" + ], + "dataset_path": "truthful_qa", + "dataset_name": "multiple_choice", + "validation_split": "validation", + "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", + "doc_to_target": 0, + "doc_to_choice": "{{mc2_targets.choices}}", + "process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 0, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "question", + "metadata": { + "version": 2.0 + } + }, + "winogrande": { + "task": "winogrande", + "dataset_path": "winogrande", + "dataset_name": "winogrande_xl", + "training_split": "train", + "validation_split": "validation", + "fewshot_split": "train", + "doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "sentence", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "arc_challenge": 1.0, + "gsm8k": 3.0, + "hellaswag": 1.0, + "mmlu": 1, + "mmlu_abstract_algebra": 0.0, + "mmlu_anatomy": 0.0, + "mmlu_astronomy": 0.0, + "mmlu_business_ethics": 0.0, + "mmlu_clinical_knowledge": 0.0, + "mmlu_college_biology": 0.0, + "mmlu_college_chemistry": 0.0, + "mmlu_college_computer_science": 0.0, + "mmlu_college_mathematics": 0.0, + "mmlu_college_medicine": 0.0, + "mmlu_college_physics": 0.0, + "mmlu_computer_security": 0.0, + "mmlu_conceptual_physics": 0.0, + "mmlu_econometrics": 0.0, + "mmlu_electrical_engineering": 0.0, + "mmlu_elementary_mathematics": 0.0, + "mmlu_formal_logic": 0.0, + "mmlu_global_facts": 0.0, + "mmlu_high_school_biology": 0.0, + "mmlu_high_school_chemistry": 0.0, + "mmlu_high_school_computer_science": 0.0, + "mmlu_high_school_european_history": 0.0, + "mmlu_high_school_geography": 0.0, + "mmlu_high_school_government_and_politics": 0.0, + "mmlu_high_school_macroeconomics": 0.0, + "mmlu_high_school_mathematics": 0.0, + "mmlu_high_school_microeconomics": 0.0, + "mmlu_high_school_physics": 0.0, + "mmlu_high_school_psychology": 0.0, + "mmlu_high_school_statistics": 0.0, + "mmlu_high_school_us_history": 0.0, + "mmlu_high_school_world_history": 0.0, + "mmlu_human_aging": 0.0, + "mmlu_human_sexuality": 0.0, + "mmlu_humanities": 1, + "mmlu_international_law": 0.0, + "mmlu_jurisprudence": 0.0, + "mmlu_logical_fallacies": 0.0, + "mmlu_machine_learning": 0.0, + "mmlu_management": 0.0, + "mmlu_marketing": 0.0, + "mmlu_medical_genetics": 0.0, + "mmlu_miscellaneous": 0.0, + "mmlu_moral_disputes": 0.0, + "mmlu_moral_scenarios": 0.0, + "mmlu_nutrition": 0.0, + "mmlu_other": 1, + "mmlu_philosophy": 0.0, + "mmlu_prehistory": 0.0, + "mmlu_professional_accounting": 0.0, + "mmlu_professional_law": 0.0, + "mmlu_professional_medicine": 0.0, + "mmlu_professional_psychology": 0.0, + "mmlu_public_relations": 0.0, + "mmlu_security_studies": 0.0, + "mmlu_social_sciences": 1, + "mmlu_sociology": 0.0, + "mmlu_stem": 1, + "mmlu_us_foreign_policy": 0.0, + "mmlu_virology": 0.0, + "mmlu_world_religions": 0.0, + "truthfulqa_gen": 3.0, + "truthfulqa_mc1": 2.0, + "truthfulqa_mc2": 2.0, + "winogrande": 1.0 + }, + "n-shot": { + "arc_challenge": 25, + "gsm8k": 5, + "hellaswag": 10, + "mmlu_abstract_algebra": 5, + "mmlu_anatomy": 5, + "mmlu_astronomy": 5, + "mmlu_business_ethics": 5, + "mmlu_clinical_knowledge": 5, + "mmlu_college_biology": 5, + "mmlu_college_chemistry": 5, + "mmlu_college_computer_science": 5, + "mmlu_college_mathematics": 5, + "mmlu_college_medicine": 5, + "mmlu_college_physics": 5, + "mmlu_computer_security": 5, + "mmlu_conceptual_physics": 5, + "mmlu_econometrics": 5, + "mmlu_electrical_engineering": 5, + "mmlu_elementary_mathematics": 5, + "mmlu_formal_logic": 5, + "mmlu_global_facts": 5, + "mmlu_high_school_biology": 5, + "mmlu_high_school_chemistry": 5, + "mmlu_high_school_computer_science": 5, + "mmlu_high_school_european_history": 5, + "mmlu_high_school_geography": 5, + "mmlu_high_school_government_and_politics": 5, + "mmlu_high_school_macroeconomics": 5, + "mmlu_high_school_mathematics": 5, + "mmlu_high_school_microeconomics": 5, + "mmlu_high_school_physics": 5, + "mmlu_high_school_psychology": 5, + "mmlu_high_school_statistics": 5, + "mmlu_high_school_us_history": 5, + "mmlu_high_school_world_history": 5, + "mmlu_human_aging": 5, + "mmlu_human_sexuality": 5, + "mmlu_international_law": 5, + "mmlu_jurisprudence": 5, + "mmlu_logical_fallacies": 5, + "mmlu_machine_learning": 5, + "mmlu_management": 5, + "mmlu_marketing": 5, + "mmlu_medical_genetics": 5, + "mmlu_miscellaneous": 5, + "mmlu_moral_disputes": 5, + "mmlu_moral_scenarios": 5, + "mmlu_nutrition": 5, + "mmlu_philosophy": 5, + "mmlu_prehistory": 5, + "mmlu_professional_accounting": 5, + "mmlu_professional_law": 5, + "mmlu_professional_medicine": 5, + "mmlu_professional_psychology": 5, + "mmlu_public_relations": 5, + "mmlu_security_studies": 5, + "mmlu_sociology": 5, + "mmlu_us_foreign_policy": 5, + "mmlu_virology": 5, + "mmlu_world_religions": 5, + "truthfulqa_gen": 0, + "truthfulqa_mc1": 0, + "truthfulqa_mc2": 0, + "winogrande": 5 + }, + "higher_is_better": { + "arc_challenge": { + "acc": true, + "acc_norm": true + }, + "gsm8k": { + "exact_match": true + }, + "hellaswag": { + "acc": true, + "acc_norm": true + }, + "mmlu": { + "acc": true, + "acc_norm": true, + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true, + "exact_match": true + }, + "mmlu_abstract_algebra": { + "acc": true + }, + "mmlu_anatomy": { + "acc": true + }, + "mmlu_astronomy": { + "acc": true + }, + "mmlu_business_ethics": { + "acc": true + }, + "mmlu_clinical_knowledge": { + "acc": true + }, + "mmlu_college_biology": { + "acc": true + }, + "mmlu_college_chemistry": { + "acc": true + }, + "mmlu_college_computer_science": { + "acc": true + }, + "mmlu_college_mathematics": { + "acc": true + }, + "mmlu_college_medicine": { + "acc": true + }, + "mmlu_college_physics": { + "acc": true + }, + "mmlu_computer_security": { + "acc": true + }, + "mmlu_conceptual_physics": { + "acc": true + }, + "mmlu_econometrics": { + "acc": true + }, + "mmlu_electrical_engineering": { + "acc": true + }, + "mmlu_elementary_mathematics": { + "acc": true + }, + "mmlu_formal_logic": { + "acc": true + }, + "mmlu_global_facts": { + "acc": true + }, + "mmlu_high_school_biology": { + "acc": true + }, + "mmlu_high_school_chemistry": { + "acc": true + }, + "mmlu_high_school_computer_science": { + "acc": true + }, + "mmlu_high_school_european_history": { + "acc": true + }, + "mmlu_high_school_geography": { + "acc": true + }, + "mmlu_high_school_government_and_politics": { + "acc": true + }, + "mmlu_high_school_macroeconomics": { + "acc": true + }, + "mmlu_high_school_mathematics": { + "acc": true + }, + "mmlu_high_school_microeconomics": { + "acc": true + }, + "mmlu_high_school_physics": { + "acc": true + }, + "mmlu_high_school_psychology": { + "acc": true + }, + "mmlu_high_school_statistics": { + "acc": true + }, + "mmlu_high_school_us_history": { + "acc": true + }, + "mmlu_high_school_world_history": { + "acc": true + }, + "mmlu_human_aging": { + "acc": true + }, + "mmlu_human_sexuality": { + "acc": true + }, + "mmlu_humanities": { + "acc": true, + "acc_norm": true, + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true, + "exact_match": true + }, + "mmlu_international_law": { + "acc": true + }, + "mmlu_jurisprudence": { + "acc": true + }, + "mmlu_logical_fallacies": { + "acc": true + }, + "mmlu_machine_learning": { + "acc": true + }, + "mmlu_management": { + "acc": true + }, + "mmlu_marketing": { + "acc": true + }, + "mmlu_medical_genetics": { + "acc": true + }, + "mmlu_miscellaneous": { + "acc": true + }, + "mmlu_moral_disputes": { + "acc": true + }, + "mmlu_moral_scenarios": { + "acc": true + }, + "mmlu_nutrition": { + "acc": true + }, + "mmlu_other": { + "acc": true, + "acc_norm": true, + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true, + "exact_match": true + }, + "mmlu_philosophy": { + "acc": true + }, + "mmlu_prehistory": { + "acc": true + }, + "mmlu_professional_accounting": { + "acc": true + }, + "mmlu_professional_law": { + "acc": true + }, + "mmlu_professional_medicine": { + "acc": true + }, + "mmlu_professional_psychology": { + "acc": true + }, + "mmlu_public_relations": { + "acc": true + }, + "mmlu_security_studies": { + "acc": true + }, + "mmlu_social_sciences": { + "acc": true, + "acc_norm": true, + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true, + "exact_match": true + }, + "mmlu_sociology": { + "acc": true + }, + "mmlu_stem": { + "acc": true, + "acc_norm": true, + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true, + "exact_match": true + }, + "mmlu_us_foreign_policy": { + "acc": true + }, + "mmlu_virology": { + "acc": true + }, + "mmlu_world_religions": { + "acc": true + }, + "openllm": { + "acc": true, + "acc_norm": true, + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true, + "exact_match": true + }, + "truthfulqa_gen": { + "bleu_max": true, + "bleu_acc": true, + "bleu_diff": true, + "rouge1_max": true, + "rouge1_acc": true, + "rouge1_diff": true, + "rouge2_max": true, + "rouge2_acc": true, + "rouge2_diff": true, + "rougeL_max": true, + "rougeL_acc": true, + "rougeL_diff": true + }, + "truthfulqa_mc1": { + "acc": true + }, + "truthfulqa_mc2": { + "acc": true + }, + "winogrande": { + "acc": true + } + }, + "n-samples": { + "arc_challenge": { + "original": 1172, + "effective": 1172 + }, + "hellaswag": { + "original": 10042, + "effective": 10042 + }, + "truthfulqa_mc2": { + "original": 817, + "effective": 817 + }, + "truthfulqa_mc1": { + "original": 817, + "effective": 817 + }, + "truthfulqa_gen": { + "original": 817, + "effective": 817 + }, + "mmlu_anatomy": { + "original": 135, + "effective": 135 + }, + "mmlu_college_physics": { + "original": 102, + "effective": 102 + }, + "mmlu_computer_security": { + "original": 100, + "effective": 100 + }, + "mmlu_conceptual_physics": { + "original": 235, + "effective": 235 + }, + "mmlu_high_school_chemistry": { + "original": 203, + "effective": 203 + }, + "mmlu_college_computer_science": { + "original": 100, + "effective": 100 + }, + "mmlu_high_school_biology": { + "original": 310, + "effective": 310 + }, + "mmlu_high_school_mathematics": { + "original": 270, + "effective": 270 + }, + "mmlu_high_school_statistics": { + "original": 216, + "effective": 216 + }, + "mmlu_college_chemistry": { + "original": 100, + "effective": 100 + }, + "mmlu_electrical_engineering": { + "original": 145, + "effective": 145 + }, + "mmlu_college_mathematics": { + "original": 100, + "effective": 100 + }, + "mmlu_college_biology": { + "original": 144, + "effective": 144 + }, + "mmlu_abstract_algebra": { + "original": 100, + "effective": 100 + }, + "mmlu_elementary_mathematics": { + "original": 378, + "effective": 378 + }, + "mmlu_high_school_physics": { + "original": 151, + "effective": 151 + }, + "mmlu_high_school_computer_science": { + "original": 100, + "effective": 100 + }, + "mmlu_machine_learning": { + "original": 112, + "effective": 112 + }, + "mmlu_astronomy": { + "original": 152, + "effective": 152 + }, + "mmlu_professional_accounting": { + "original": 282, + "effective": 282 + }, + "mmlu_global_facts": { + "original": 100, + "effective": 100 + }, + "mmlu_college_medicine": { + "original": 173, + "effective": 173 + }, + "mmlu_virology": { + "original": 166, + "effective": 166 + }, + "mmlu_human_aging": { + "original": 223, + "effective": 223 + }, + "mmlu_professional_medicine": { + "original": 272, + "effective": 272 + }, + "mmlu_medical_genetics": { + "original": 100, + "effective": 100 + }, + "mmlu_business_ethics": { + "original": 100, + "effective": 100 + }, + "mmlu_management": { + "original": 103, + "effective": 103 + }, + "mmlu_miscellaneous": { + "original": 783, + "effective": 783 + }, + "mmlu_nutrition": { + "original": 306, + "effective": 306 + }, + "mmlu_marketing": { + "original": 234, + "effective": 234 + }, + "mmlu_clinical_knowledge": { + "original": 265, + "effective": 265 + }, + "mmlu_high_school_psychology": { + "original": 545, + "effective": 545 + }, + "mmlu_us_foreign_policy": { + "original": 100, + "effective": 100 + }, + "mmlu_professional_psychology": { + "original": 612, + "effective": 612 + }, + "mmlu_human_sexuality": { + "original": 131, + "effective": 131 + }, + "mmlu_public_relations": { + "original": 110, + "effective": 110 + }, + "mmlu_security_studies": { + "original": 245, + "effective": 245 + }, + "mmlu_sociology": { + "original": 201, + "effective": 201 + }, + "mmlu_high_school_microeconomics": { + "original": 238, + "effective": 238 + }, + "mmlu_high_school_macroeconomics": { + "original": 390, + "effective": 390 + }, + "mmlu_high_school_government_and_politics": { + "original": 193, + "effective": 193 + }, + "mmlu_econometrics": { + "original": 114, + "effective": 114 + }, + "mmlu_high_school_geography": { + "original": 198, + "effective": 198 + }, + "mmlu_prehistory": { + "original": 324, + "effective": 324 + }, + "mmlu_moral_scenarios": { + "original": 895, + "effective": 895 + }, + "mmlu_moral_disputes": { + "original": 346, + "effective": 346 + }, + "mmlu_philosophy": { + "original": 311, + "effective": 311 + }, + "mmlu_high_school_world_history": { + "original": 237, + "effective": 237 + }, + "mmlu_logical_fallacies": { + "original": 163, + "effective": 163 + }, + "mmlu_formal_logic": { + "original": 126, + "effective": 126 + }, + "mmlu_high_school_us_history": { + "original": 204, + "effective": 204 + }, + "mmlu_high_school_european_history": { + "original": 165, + "effective": 165 + }, + "mmlu_professional_law": { + "original": 1534, + "effective": 1534 + }, + "mmlu_jurisprudence": { + "original": 108, + "effective": 108 + }, + "mmlu_international_law": { + "original": 121, + "effective": 121 + }, + "mmlu_world_religions": { + "original": 171, + "effective": 171 + }, + "winogrande": { + "original": 1267, + "effective": 1267 + }, + "gsm8k": { + "original": 1319, + "effective": 1319 + } + }, + "config": { + "model": "sparseml", + "model_args": "pretrained=Qwen__Qwen2-7B-Instruct,dtype=auto,add_bos_token=True,max_seq_len=4096", + "model_num_parameters": 7618397696, + "model_dtype": "torch.bfloat16", + "model_revision": "main", + "model_sha": "", + "batch_size": "auto", + "batch_sizes": [ + 8 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null, + "random_seed": 0, + "numpy_seed": 1234, + "torch_seed": 1234, + "fewshot_seed": 1234 + }, + "git_hash": null, + "date": 1720656372.6809015, + "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.26.3\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Mar 22 2024, 16:50:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.16\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect", + "transformers_version": "4.42.3", + "upper_git_hash": null, + "tokenizer_pad_token": [ + "<|endoftext|>", + "151643" + ], + "tokenizer_eos_token": [ + "<|im_end|>", + "151645" + ], + "tokenizer_bos_token": [ + null, + "None" + ], + "eot_token_id": 151645, + "max_length": 32768, + "task_hashes": {}, + "model_source": "sparseml", + "model_name": "Qwen__Qwen2-7B-Instruct", + "model_name_sanitized": "Qwen__Qwen2-7B-Instruct", + "system_instruction": null, + "system_instruction_sha": null, + "fewshot_as_multiturn": false, + "chat_template": null, + "chat_template_sha": null, + "start_time": 14721447.548229909, + "end_time": 14799728.273875136, + "total_evaluation_time_seconds": "78280.72564522736" +} \ No newline at end of file