File size: 4,383 Bytes
3409c51
e788988
 
 
 
 
 
 
 
3409c51
 
 
bae0a3d
e788988
 
 
 
a7d46ed
 
 
 
 
 
3409c51
 
 
 
 
 
cf79504
fb0385b
d9ab5da
3409c51
fb0385b
3409c51
 
 
fb0385b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409c51
 
e788988
 
 
 
 
 
 
d9ab5da
a7d46ed
 
3409c51
d9ab5da
3409c51
08d7494
2ef3177
fc9184a
 
3409c51
bced865
a0df302
a7d46ed
 
 
 
 
 
 
 
 
 
 
3bb5aae
bced865
 
092d0bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.4
inference: false
model_type: llama
prompt_template: |
  <|im_start|>user\n
  {prompt}<|im_end|>\n
  <|im_start|>assistant\n
quantized_by: mwitiderrick
tags:
- deepsparse
---
## TinyLlama 1.1B Chat 0.4 - DeepSparse
This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.4) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.

This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).

## Inference
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: 
```bash
pip install deepsparse-nightly[llm]
```
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
```python
from deepsparse import TextGeneration

prompt = "How to make banana bread?"
formatted_prompt =  f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"

model = TextGeneration(model="hf:neuralmagic/TinyLlama-1.1B-Chat-v0.4-pruned50-quant")
print(model(formatted_prompt, max_new_tokens=500).generations[0].text)

"""
Banana bread is a delicious and easy-to-make recipe that is sure to please. Here is a recipe for making banana bread:

Ingredients:

    For the Banana Bread:

    - 1 cup of sugar
    - 1 cup of flour
    - 1/2 cup of mashed bananas
    - 1/4 cup of milk
    - 1/2 cup of melted butter
    - 1/4 cup of baking powder
    - 1/4 cup of baking soda
    - 1/4 cup of eggs
    - 1/4 cup of milk
    - 1/4 cup of sugar


Instructions:

    1. Preheat the oven to 325°F (160°C).
    2. In a large bowl, combine the sugar and flour.
    3. In a separate bow, combine the mashed bananas, milk, butter, baking powder, baking soda, milk, sugar.
    4. Add the bananas and milk into the flour-sugar mixture.
    5. Pour the milk into the bowl of the flour-sugar mixture.
    6. Pour the baking powder into the bowl of the flour-sugar mixture.
    7. Pour the mashed bananas into the bowl of the flour-sugar mixture.
    8. Add the eggs into the bowl of the flour-sugar mixture.
    9. Stir the mixture until it becomes a dough.
    10. Grease a 9-inch (23 cm) square pan.
    11. Pour the mixture into the pan.
    12. Bake the banana bread in the oven for 40 minutes.
    13. Remove the banana bread from the oven and cool it.
    14. Cut the bread into 16 pieces.
    15. Make the glaze:
    16. Sprinkle the sugar over the bread.
    17. Bake the bread in the oven for 30 minutes.
"""
```
## Prompt template

```
<|im_start|>user\n
{prompt}<|im_end|>\n
<|im_start|>assistant\n

```
## Sparsification
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.

```bash
git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
wget https://huggingface.co/neuralmagic/TinyLlama-1.1B-Chat-v0.4-pruned50-quant/raw/main/recipe.yaml # download recipe
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v0.4 open_platypus --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment 
cp deployment/model.onnx deployment/model-orig.onnx
```
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
```python
import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")
```
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. 
## Slack

For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)