Update README.md
Browse files
README.md
CHANGED
@@ -42,7 +42,7 @@ from transformers import AutoTokenizer
|
|
42 |
from vllm import LLM, SamplingParams
|
43 |
|
44 |
max_model_len, tp_size = 4096, 1
|
45 |
-
model_name = "neuralmagic
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
48 |
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
@@ -65,6 +65,9 @@ vLLM also supports OpenAI-compatible serving. See the [documentation](https://do
|
|
65 |
|
66 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
67 |
|
|
|
|
|
|
|
68 |
```bash
|
69 |
python quantize.py --model_id ibm-granite/granite-3.1-2b-base --save_path "output_dir/"
|
70 |
```
|
@@ -109,16 +112,20 @@ def main():
|
|
109 |
if __name__ == "__main__":
|
110 |
main()
|
111 |
```
|
|
|
112 |
|
113 |
## Evaluation
|
114 |
|
115 |
-
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
116 |
|
|
|
|
|
|
|
117 |
OpenLLM Leaderboard V1:
|
118 |
```
|
119 |
lm_eval \
|
120 |
--model vllm \
|
121 |
-
--model_args pretrained="neuralmagic
|
122 |
--tasks openllm \
|
123 |
--write_out \
|
124 |
--batch_size auto \
|
@@ -130,7 +137,7 @@ lm_eval \
|
|
130 |
##### Generation
|
131 |
```
|
132 |
python3 codegen/generate.py \
|
133 |
-
--model neuralmagic
|
134 |
--bs 16 \
|
135 |
--temperature 0.2 \
|
136 |
--n_samples 50 \
|
@@ -140,35 +147,82 @@ python3 codegen/generate.py \
|
|
140 |
##### Sanitization
|
141 |
```
|
142 |
python3 evalplus/sanitize.py \
|
143 |
-
humaneval/neuralmagic
|
144 |
```
|
145 |
##### Evaluation
|
146 |
```
|
147 |
evalplus.evaluate \
|
148 |
--dataset humaneval \
|
149 |
-
--samples humaneval/neuralmagic
|
150 |
```
|
|
|
151 |
|
152 |
### Accuracy
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
#### HumanEval pass@1 scores
|
169 |
-
| Metric | ibm-granite/granite-3.1-2b-base | neuralmagic-ent/granite-3.1-2b-base-FP8-dynamic |
|
170 |
-
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
171 |
-
| HumanEval Pass@1 | 30.00 | 30.40 |
|
172 |
|
173 |
|
174 |
|
|
|
42 |
from vllm import LLM, SamplingParams
|
43 |
|
44 |
max_model_len, tp_size = 4096, 1
|
45 |
+
model_name = "neuralmagic/granite-3.1-2b-base-FP8-dynamic"
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
48 |
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
|
|
65 |
|
66 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
67 |
|
68 |
+
<details>
|
69 |
+
<summary>Model Creation Code</summary>
|
70 |
+
|
71 |
```bash
|
72 |
python quantize.py --model_id ibm-granite/granite-3.1-2b-base --save_path "output_dir/"
|
73 |
```
|
|
|
112 |
if __name__ == "__main__":
|
113 |
main()
|
114 |
```
|
115 |
+
</details>
|
116 |
|
117 |
## Evaluation
|
118 |
|
119 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
120 |
|
121 |
+
<details>
|
122 |
+
<summary>Evaluation Commands</summary>
|
123 |
+
|
124 |
OpenLLM Leaderboard V1:
|
125 |
```
|
126 |
lm_eval \
|
127 |
--model vllm \
|
128 |
+
--model_args pretrained="neuralmagic/granite-3.1-2b-base-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
129 |
--tasks openllm \
|
130 |
--write_out \
|
131 |
--batch_size auto \
|
|
|
137 |
##### Generation
|
138 |
```
|
139 |
python3 codegen/generate.py \
|
140 |
+
--model neuralmagic/granite-3.1-2b-base-FP8-dynamic \
|
141 |
--bs 16 \
|
142 |
--temperature 0.2 \
|
143 |
--n_samples 50 \
|
|
|
147 |
##### Sanitization
|
148 |
```
|
149 |
python3 evalplus/sanitize.py \
|
150 |
+
humaneval/neuralmagic--granite-3.1-2b-base-FP8-dynamic_vllm_temp_0.2
|
151 |
```
|
152 |
##### Evaluation
|
153 |
```
|
154 |
evalplus.evaluate \
|
155 |
--dataset humaneval \
|
156 |
+
--samples humaneval/neuralmagic--granite-3.1-2b-base-FP8-dynamic_vllm_temp_0.2-sanitized
|
157 |
```
|
158 |
+
</details>
|
159 |
|
160 |
### Accuracy
|
161 |
|
162 |
+
<table>
|
163 |
+
<thead>
|
164 |
+
<tr>
|
165 |
+
<th>Category</th>
|
166 |
+
<th>Metric</th>
|
167 |
+
<th>ibm-granite/granite-3.1-2b-instruct</th>
|
168 |
+
<th>neuralmagic/granite-3.1-2b-base-FP8-dynamic</th>
|
169 |
+
<th>Recovery (%)</th>
|
170 |
+
</tr>
|
171 |
+
</thead>
|
172 |
+
<tbody>
|
173 |
+
<tr>
|
174 |
+
<td rowspan="7"><b>OpenLLM Leaderboard V1</b></td>
|
175 |
+
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
|
176 |
+
<td>55.63</td>
|
177 |
+
<td>53.50</td>
|
178 |
+
<td>96.17</td>
|
179 |
+
</tr>
|
180 |
+
<tr>
|
181 |
+
<td>GSM8K (Strict-Match, 5-shot)</td>
|
182 |
+
<td>60.96</td>
|
183 |
+
<td>46.10</td>
|
184 |
+
<td>75.63</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td>HellaSwag (Acc-Norm, 10-shot)</td>
|
188 |
+
<td>75.21</td>
|
189 |
+
<td>77.76</td>
|
190 |
+
<td>103.39</td>
|
191 |
+
</tr>
|
192 |
+
<tr>
|
193 |
+
<td>MMLU (Acc, 5-shot)</td>
|
194 |
+
<td>54.38</td>
|
195 |
+
<td>52.61</td>
|
196 |
+
<td>96.75</td>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<td>TruthfulQA (MC2, 0-shot)</td>
|
200 |
+
<td>55.93</td>
|
201 |
+
<td>39.84</td>
|
202 |
+
<td>71.23</td>
|
203 |
+
</tr>
|
204 |
+
<tr>
|
205 |
+
<td>Winogrande (Acc, 5-shot)</td>
|
206 |
+
<td>69.67</td>
|
207 |
+
<td>74.43</td>
|
208 |
+
<td>106.84</td>
|
209 |
+
</tr>
|
210 |
+
<tr>
|
211 |
+
<td><b>Average Score</b></td>
|
212 |
+
<td><b>61.98</b></td>
|
213 |
+
<td><b>57.37</b></td>
|
214 |
+
<td><b>92.57</b></td>
|
215 |
+
</tr>
|
216 |
+
<tr>
|
217 |
+
<td rowspan="2"><b>HumanEval</b></td>
|
218 |
+
<td>HumanEval Pass@1</td>
|
219 |
+
<td>30.00</td>
|
220 |
+
<td>30.40</td>
|
221 |
+
<td><b>101.33</b></td>
|
222 |
+
</tr>
|
223 |
+
</tbody>
|
224 |
+
</table>
|
225 |
|
|
|
|
|
|
|
|
|
226 |
|
227 |
|
228 |
|