Edison
commited on
Commit
•
4aac43b
1
Parent(s):
b32141a
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: neuralsentry/distilbert-git-commits-mlm
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: vulnfixClassification-DistilBERT-DCMB
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# vulnfixClassification-DistilBERT-DCMB
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [neuralsentry/distilbert-git-commits-mlm](https://huggingface.co/neuralsentry/distilbert-git-commits-mlm) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1769
|
24 |
+
- Accuracy: 0.9713
|
25 |
+
- Precision: 0.9778
|
26 |
+
- Recall: 0.9667
|
27 |
+
- F1: 0.9722
|
28 |
+
- Roc Auc: 0.9715
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 256
|
49 |
+
- eval_batch_size: 256
|
50 |
+
- seed: 420
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
59 |
+
| 0.2594 | 1.0 | 110 | 0.1452 | 0.9520 | 0.9672 | 0.9395 | 0.9532 | 0.9525 |
|
60 |
+
| 0.0966 | 2.0 | 220 | 0.1103 | 0.9644 | 0.9714 | 0.9599 | 0.9656 | 0.9646 |
|
61 |
+
| 0.0499 | 3.0 | 330 | 0.1193 | 0.9640 | 0.9679 | 0.9626 | 0.9653 | 0.9641 |
|
62 |
+
| 0.0251 | 4.0 | 440 | 0.1289 | 0.9623 | 0.9577 | 0.9703 | 0.9640 | 0.9619 |
|
63 |
+
| 0.0132 | 5.0 | 550 | 0.1495 | 0.9660 | 0.9660 | 0.9687 | 0.9673 | 0.9659 |
|
64 |
+
| 0.0086 | 6.0 | 660 | 0.1759 | 0.9684 | 0.9830 | 0.9558 | 0.9692 | 0.9689 |
|
65 |
+
| 0.0054 | 7.0 | 770 | 0.1568 | 0.9700 | 0.9788 | 0.9632 | 0.9709 | 0.9703 |
|
66 |
+
| 0.0023 | 8.0 | 880 | 0.1775 | 0.9707 | 0.9754 | 0.9681 | 0.9717 | 0.9708 |
|
67 |
+
| 0.0023 | 9.0 | 990 | 0.1752 | 0.9710 | 0.9794 | 0.9646 | 0.9719 | 0.9713 |
|
68 |
+
| 0.0011 | 10.0 | 1100 | 0.1769 | 0.9713 | 0.9778 | 0.9667 | 0.9722 | 0.9715 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.31.0
|
74 |
+
- Pytorch 2.0.1+cu118
|
75 |
+
- Datasets 2.14.2
|
76 |
+
- Tokenizers 0.13.3
|