--- base_model: neuralsentry/starencoder-git-commits-mlm tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vulnfixClassification-StarEncoder-DCMB results: [] --- # vulnfixClassification-StarEncoder-DCMB This model is a fine-tuned version of [neuralsentry/starencoder-git-commits-mlm](https://huggingface.co/neuralsentry/starencoder-git-commits-mlm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1797 - Accuracy: 0.9770 - Precision: 0.9841 - Recall: 0.9714 - F1: 0.9777 - Roc Auc: 0.9772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 420 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.2106 | 1.0 | 219 | 0.1196 | 0.9640 | 0.9654 | 0.9654 | 0.9654 | 0.9639 | | 0.086 | 2.0 | 438 | 0.0883 | 0.9736 | 0.9859 | 0.9629 | 0.9743 | 0.9740 | | 0.0477 | 3.0 | 657 | 0.0944 | 0.9729 | 0.9776 | 0.9700 | 0.9738 | 0.9730 | | 0.0269 | 4.0 | 876 | 0.1215 | 0.9723 | 0.9705 | 0.9764 | 0.9734 | 0.9721 | | 0.0146 | 5.0 | 1095 | 0.1299 | 0.9743 | 0.9854 | 0.9648 | 0.9750 | 0.9747 | | 0.0069 | 6.0 | 1314 | 0.1504 | 0.9750 | 0.9814 | 0.9703 | 0.9758 | 0.9752 | | 0.0044 | 7.0 | 1533 | 0.1653 | 0.9743 | 0.9779 | 0.9725 | 0.9752 | 0.9744 | | 0.0019 | 8.0 | 1752 | 0.1804 | 0.9756 | 0.9817 | 0.9711 | 0.9764 | 0.9758 | | 0.0008 | 9.0 | 1971 | 0.1827 | 0.9767 | 0.9839 | 0.9711 | 0.9775 | 0.9769 | | 0.0008 | 10.0 | 2190 | 0.1797 | 0.9770 | 0.9841 | 0.9714 | 0.9777 | 0.9772 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3