nevreal commited on
Commit
8112ef8
·
verified ·
1 Parent(s): 6ff2047

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +856 -0
app.py ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from original import *
2
+
3
+ import shutil, glob
4
+
5
+ from easyfuncs import download_from_url, CachedModels
6
+
7
+ os.makedirs("dataset",exist_ok=True)
8
+
9
+ model_library = CachedModels()
10
+
11
+
12
+
13
+ with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="sky",neutral_hue="zinc")) as app:
14
+
15
+ with gr.Row():
16
+
17
+ gr.HTML("<img src='file/a.png' alt='image'>")
18
+
19
+ with gr.Tabs():
20
+
21
+ with gr.TabItem("Inference"):
22
+
23
+ with gr.Row():
24
+
25
+ voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)
26
+
27
+ refresh_button = gr.Button("Refresh", variant="primary")
28
+
29
+ spk_item = gr.Slider(
30
+
31
+ minimum=0,
32
+
33
+ maximum=2333,
34
+
35
+ step=1,
36
+
37
+ label="Speaker ID",
38
+
39
+ value=0,
40
+
41
+ visible=False,
42
+
43
+ interactive=True,
44
+
45
+ )
46
+
47
+ vc_transform0 = gr.Number(
48
+
49
+ label="Pitch",
50
+
51
+ value=0
52
+
53
+ )
54
+
55
+ but0 = gr.Button(value="Convert", variant="primary")
56
+
57
+ with gr.Row():
58
+
59
+ with gr.Column():
60
+
61
+ with gr.Row():
62
+
63
+ dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
64
+
65
+ with gr.Row():
66
+
67
+ record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
68
+
69
+ with gr.Row():
70
+
71
+ paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
72
+
73
+ input_audio0 = gr.Dropdown(
74
+
75
+ label="Input Path",
76
+
77
+ value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '',
78
+
79
+ choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg
80
+
81
+ allow_custom_value=True
82
+
83
+ )
84
+
85
+ with gr.Row():
86
+
87
+ audio_player = gr.Audio()
88
+
89
+ input_audio0.change(
90
+
91
+ inputs=[input_audio0],
92
+
93
+ outputs=[audio_player],
94
+
95
+ fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None
96
+
97
+ )
98
+
99
+ record_button.stop_recording(
100
+
101
+ fn=lambda audio:audio, #TODO save wav lambda
102
+
103
+ inputs=[record_button],
104
+
105
+ outputs=[input_audio0])
106
+
107
+ dropbox.upload(
108
+
109
+ fn=lambda audio:audio.name,
110
+
111
+ inputs=[dropbox],
112
+
113
+ outputs=[input_audio0])
114
+
115
+ with gr.Column():
116
+
117
+ with gr.Accordion("Change Index", open=False):
118
+
119
+ file_index2 = gr.Dropdown(
120
+
121
+ label="Change Index",
122
+
123
+ choices=sorted(index_paths),
124
+
125
+ interactive=True,
126
+
127
+ value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else ''
128
+
129
+ )
130
+
131
+ index_rate1 = gr.Slider(
132
+
133
+ minimum=0,
134
+
135
+ maximum=1,
136
+
137
+ label="Index Strength",
138
+
139
+ value=0.5,
140
+
141
+ interactive=True,
142
+
143
+ )
144
+
145
+ vc_output2 = gr.Audio(label="Output")
146
+
147
+ with gr.Accordion("General Settings", open=False):
148
+
149
+ f0method0 = gr.Radio(
150
+
151
+ label="Method",
152
+
153
+ choices=["pm", "harvest", "crepe", "rmvpe"]
154
+
155
+ if config.dml == False
156
+
157
+ else ["pm", "harvest", "rmvpe"],
158
+
159
+ value="rmvpe",
160
+
161
+ interactive=True,
162
+
163
+ )
164
+
165
+ filter_radius0 = gr.Slider(
166
+
167
+ minimum=0,
168
+
169
+ maximum=7,
170
+
171
+ label="Breathiness Reduction (Harvest only)",
172
+
173
+ value=3,
174
+
175
+ step=1,
176
+
177
+ interactive=True,
178
+
179
+ )
180
+
181
+ resample_sr0 = gr.Slider(
182
+
183
+ minimum=0,
184
+
185
+ maximum=48000,
186
+
187
+ label="Resample",
188
+
189
+ value=0,
190
+
191
+ step=1,
192
+
193
+ interactive=True,
194
+
195
+ visible=False
196
+
197
+ )
198
+
199
+ rms_mix_rate0 = gr.Slider(
200
+
201
+ minimum=0,
202
+
203
+ maximum=1,
204
+
205
+ label="Volume Normalization",
206
+
207
+ value=0,
208
+
209
+ interactive=True,
210
+
211
+ )
212
+
213
+ protect0 = gr.Slider(
214
+
215
+ minimum=0,
216
+
217
+ maximum=0.5,
218
+
219
+ label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
220
+
221
+ value=0.33,
222
+
223
+ step=0.01,
224
+
225
+ interactive=True,
226
+
227
+ )
228
+
229
+ if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0)
230
+
231
+ file_index1 = gr.Textbox(
232
+
233
+ label="Index Path",
234
+
235
+ interactive=True,
236
+
237
+ visible=False#Not used here
238
+
239
+ )
240
+
241
+ refresh_button.click(
242
+
243
+ fn=change_choices,
244
+
245
+ inputs=[],
246
+
247
+ outputs=[voice_model, file_index2],
248
+
249
+ api_name="infer_refresh",
250
+
251
+ )
252
+
253
+ refresh_button.click(
254
+
255
+ fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
256
+
257
+ inputs=[],
258
+
259
+ outputs = [input_audio0],
260
+
261
+ )
262
+
263
+ refresh_button.click(
264
+
265
+ fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
266
+
267
+ inputs=[],
268
+
269
+ outputs = [input_audio0],
270
+
271
+ )
272
+
273
+ with gr.Row():
274
+
275
+ f0_file = gr.File(label="F0 Path", visible=False)
276
+
277
+ with gr.Row():
278
+
279
+ vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False)
280
+
281
+ but0.click(
282
+
283
+ vc.vc_single,
284
+
285
+ [
286
+
287
+ spk_item,
288
+
289
+ input_audio0,
290
+
291
+ vc_transform0,
292
+
293
+ f0_file,
294
+
295
+ f0method0,
296
+
297
+ file_index1,
298
+
299
+ file_index2,
300
+
301
+ index_rate1,
302
+
303
+ filter_radius0,
304
+
305
+ resample_sr0,
306
+
307
+ rms_mix_rate0,
308
+
309
+ protect0,
310
+
311
+ ],
312
+
313
+ [vc_output1, vc_output2],
314
+
315
+ api_name="infer_convert",
316
+
317
+ )
318
+
319
+ voice_model.change(
320
+
321
+ fn=vc.get_vc,
322
+
323
+ inputs=[voice_model, protect0, protect0],
324
+
325
+ outputs=[spk_item, protect0, protect0, file_index2, file_index2],
326
+
327
+ api_name="infer_change_voice",
328
+
329
+ )
330
+
331
+ with gr.TabItem("Download Models"):
332
+
333
+ with gr.Row():
334
+
335
+ url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)
336
+
337
+ name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)
338
+
339
+ url_download = gr.Button(value="Download Model",scale=2)
340
+
341
+ url_download.click(
342
+
343
+ inputs=[url_input,name_output],
344
+
345
+ outputs=[url_input],
346
+
347
+ fn=download_from_url,
348
+
349
+ )
350
+
351
+ with gr.Row():
352
+
353
+ model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)
354
+
355
+ download_from_browser = gr.Button(value="Get",scale=2)
356
+
357
+ download_from_browser.click(
358
+
359
+ inputs=[model_browser],
360
+
361
+ outputs=[model_browser],
362
+
363
+ fn=lambda model: download_from_url(model_library.models[model],model),
364
+
365
+ )
366
+
367
+ with gr.TabItem("Train"):
368
+
369
+ with gr.Row():
370
+
371
+ with gr.Column():
372
+
373
+ training_name = gr.Textbox(label="Name your model", value="My-Voice",placeholder="My-Voice")
374
+
375
+ np7 = gr.Slider(
376
+
377
+ minimum=0,
378
+
379
+ maximum=config.n_cpu,
380
+
381
+ step=1,
382
+
383
+ label="Number of CPU processes used to extract pitch features",
384
+
385
+ value=int(np.ceil(config.n_cpu / 1.5)),
386
+
387
+ interactive=True,
388
+
389
+ )
390
+
391
+ sr2 = gr.Radio(
392
+
393
+ label="Sampling Rate",
394
+
395
+ choices=["40k", "32k"],
396
+
397
+ value="32k",
398
+
399
+ interactive=True,
400
+
401
+ visible=False
402
+
403
+ )
404
+
405
+ if_f0_3 = gr.Radio(
406
+
407
+ label="Will your model be used for singing? If not, you can ignore this.",
408
+
409
+ choices=[True, False],
410
+
411
+ value=True,
412
+
413
+ interactive=True,
414
+
415
+ visible=False
416
+
417
+ )
418
+
419
+ version19 = gr.Radio(
420
+
421
+ label="Version",
422
+
423
+ choices=["v1", "v2"],
424
+
425
+ value="v2",
426
+
427
+ interactive=True,
428
+
429
+ visible=False,
430
+
431
+ )
432
+
433
+ dataset_folder = gr.Textbox(
434
+
435
+ label="dataset folder", value='dataset'
436
+
437
+ )
438
+
439
+ easy_uploader = gr.Files(label="Drop your audio files here",file_types=['audio'])
440
+
441
+ but1 = gr.Button("1. Process", variant="primary")
442
+
443
+ info1 = gr.Textbox(label="Information", value="",visible=True)
444
+
445
+ easy_uploader.upload(inputs=[dataset_folder],outputs=[],fn=lambda folder:os.makedirs(folder,exist_ok=True))
446
+
447
+ easy_uploader.upload(
448
+
449
+ fn=lambda files,folder: [shutil.copy2(f.name,os.path.join(folder,os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'),
450
+
451
+ inputs=[easy_uploader, dataset_folder],
452
+
453
+ outputs=[])
454
+
455
+ gpus6 = gr.Textbox(
456
+
457
+ label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
458
+
459
+ value=gpus,
460
+
461
+ interactive=True,
462
+
463
+ visible=F0GPUVisible,
464
+
465
+ )
466
+
467
+ gpu_info9 = gr.Textbox(
468
+
469
+ label="GPU Info", value=gpu_info, visible=F0GPUVisible
470
+
471
+ )
472
+
473
+ spk_id5 = gr.Slider(
474
+
475
+ minimum=0,
476
+
477
+ maximum=4,
478
+
479
+ step=1,
480
+
481
+ label="Speaker ID",
482
+
483
+ value=0,
484
+
485
+ interactive=True,
486
+
487
+ visible=False
488
+
489
+ )
490
+
491
+ but1.click(
492
+
493
+ preprocess_dataset,
494
+
495
+ [dataset_folder, training_name, sr2, np7],
496
+
497
+ [info1],
498
+
499
+ api_name="train_preprocess",
500
+
501
+ )
502
+
503
+ with gr.Column():
504
+
505
+ f0method8 = gr.Radio(
506
+
507
+ label="F0 extraction method",
508
+
509
+ choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
510
+
511
+ value="rmvpe_gpu",
512
+
513
+ interactive=True,
514
+
515
+ )
516
+
517
+ gpus_rmvpe = gr.Textbox(
518
+
519
+ label="GPU numbers to use separated by -, (e.g. 0-1-2)",
520
+
521
+ value="%s-%s" % (gpus, gpus),
522
+
523
+ interactive=True,
524
+
525
+ visible=F0GPUVisible,
526
+
527
+ )
528
+
529
+ but2 = gr.Button("2. Extract Features", variant="primary")
530
+
531
+ info2 = gr.Textbox(label="Information", value="", max_lines=8)
532
+
533
+ f0method8.change(
534
+
535
+ fn=change_f0_method,
536
+
537
+ inputs=[f0method8],
538
+
539
+ outputs=[gpus_rmvpe],
540
+
541
+ )
542
+
543
+ but2.click(
544
+
545
+ extract_f0_feature,
546
+
547
+ [
548
+
549
+ gpus6,
550
+
551
+ np7,
552
+
553
+ f0method8,
554
+
555
+ if_f0_3,
556
+
557
+ training_name,
558
+
559
+ version19,
560
+
561
+ gpus_rmvpe,
562
+
563
+ ],
564
+
565
+ [info2],
566
+
567
+ api_name="train_extract_f0_feature",
568
+
569
+ )
570
+
571
+ with gr.Column():
572
+
573
+ total_epoch11 = gr.Slider(
574
+
575
+ minimum=2,
576
+
577
+ maximum=1000,
578
+
579
+ step=1,
580
+
581
+ label="Epochs (more epochs may improve quality but takes longer)",
582
+
583
+ value=150,
584
+
585
+ interactive=True,
586
+
587
+ )
588
+
589
+ but4 = gr.Button("3. Train Index", variant="primary")
590
+
591
+ but3 = gr.Button("4. Train Model", variant="primary")
592
+
593
+ info3 = gr.Textbox(label="Information", value="", max_lines=10)
594
+
595
+ with gr.Accordion(label="General Settings", open=False):
596
+
597
+ gpus16 = gr.Textbox(
598
+
599
+ label="GPUs separated by -, (e.g. 0-1-2)",
600
+
601
+ value="0",
602
+
603
+ interactive=True,
604
+
605
+ visible=True
606
+
607
+ )
608
+
609
+ save_epoch10 = gr.Slider(
610
+
611
+ minimum=1,
612
+
613
+ maximum=50,
614
+
615
+ step=1,
616
+
617
+ label="Weight Saving Frequency",
618
+
619
+ value=25,
620
+
621
+ interactive=True,
622
+
623
+ )
624
+
625
+ batch_size12 = gr.Slider(
626
+
627
+ minimum=1,
628
+
629
+ maximum=40,
630
+
631
+ step=1,
632
+
633
+ label="Batch Size",
634
+
635
+ value=default_batch_size,
636
+
637
+ interactive=True,
638
+
639
+ )
640
+
641
+ if_save_latest13 = gr.Radio(
642
+
643
+ label="Only save the latest model",
644
+
645
+ choices=["yes", "no"],
646
+
647
+ value="yes",
648
+
649
+ interactive=True,
650
+
651
+ visible=False
652
+
653
+ )
654
+
655
+ if_cache_gpu17 = gr.Radio(
656
+
657
+ label="If your dataset is UNDER 10 minutes, cache it to train faster",
658
+
659
+ choices=["yes", "no"],
660
+
661
+ value="no",
662
+
663
+ interactive=True,
664
+
665
+ )
666
+
667
+ if_save_every_weights18 = gr.Radio(
668
+
669
+ label="Save small model at every save point",
670
+
671
+ choices=["yes", "no"],
672
+
673
+ value="yes",
674
+
675
+ interactive=True,
676
+
677
+ )
678
+
679
+ with gr.Accordion(label="Change pretrains", open=False):
680
+ pretrained_G14 = gr.Textbox(
681
+
682
+ label="pretrained G path",
683
+
684
+
685
+ )
686
+
687
+ pretrained_D15 = gr.Textbox(
688
+
689
+ label="pretrained D path",
690
+ )
691
+
692
+ with gr.Row():
693
+
694
+ download_model = gr.Button('5.Download Model')
695
+
696
+ with gr.Row():
697
+
698
+ model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
699
+
700
+ download_model.click(
701
+
702
+ fn=lambda name: os.listdir(f'assets/weights/{name}') + glob.glob(f'logs/{name.split(".")[0]}/added_*.index'),
703
+
704
+ inputs=[training_name],
705
+
706
+ outputs=[model_files, info3])
707
+
708
+ with gr.Row():
709
+
710
+ sr2.change(
711
+
712
+ change_sr2,
713
+
714
+ [sr2, if_f0_3, version19],
715
+
716
+ [pretrained_G14, pretrained_D15],
717
+
718
+ )
719
+
720
+ version19.change(
721
+
722
+ change_version19,
723
+
724
+ [sr2, if_f0_3, version19],
725
+
726
+ [pretrained_G14, pretrained_D15, sr2],
727
+
728
+ )
729
+
730
+ if_f0_3.change(
731
+
732
+ change_f0,
733
+
734
+ [if_f0_3, sr2, version19],
735
+
736
+ [f0method8, pretrained_G14, pretrained_D15],
737
+
738
+ )
739
+
740
+ with gr.Row():
741
+
742
+ but5 = gr.Button("1 Click Training", variant="primary", visible=False)
743
+
744
+ but3.click(
745
+
746
+ click_train,
747
+
748
+ [
749
+
750
+ training_name,
751
+
752
+ sr2,
753
+
754
+ if_f0_3,
755
+
756
+ spk_id5,
757
+
758
+ save_epoch10,
759
+
760
+ total_epoch11,
761
+
762
+ batch_size12,
763
+
764
+ if_save_latest13,
765
+
766
+ pretrained_G14,
767
+
768
+ pretrained_D15,
769
+
770
+ gpus16,
771
+
772
+ if_cache_gpu17,
773
+
774
+ if_save_every_weights18,
775
+
776
+ version19,
777
+
778
+ ],
779
+
780
+ info3,
781
+
782
+ api_name="train_start",
783
+
784
+ )
785
+
786
+ but4.click(train_index, [training_name, version19], info3)
787
+
788
+ but5.click(
789
+
790
+ train1key,
791
+
792
+ [
793
+
794
+ training_name,
795
+
796
+ sr2,
797
+
798
+ if_f0_3,
799
+
800
+ dataset_folder,
801
+
802
+ spk_id5,
803
+
804
+ np7,
805
+
806
+ f0method8,
807
+
808
+ save_epoch10,
809
+
810
+ total_epoch11,
811
+
812
+ batch_size12,
813
+
814
+ if_save_latest13,
815
+
816
+ pretrained_G14,
817
+
818
+ pretrained_D15,
819
+
820
+ gpus16,
821
+
822
+ if_cache_gpu17,
823
+
824
+ if_save_every_weights18,
825
+
826
+ version19,
827
+
828
+ gpus_rmvpe,
829
+
830
+ ],
831
+
832
+ info3,
833
+
834
+ api_name="train_start_all",
835
+
836
+ )
837
+
838
+
839
+
840
+ if config.iscolab:
841
+
842
+ app.queue(concurrency_count=511, max_size=1022).launch(share=True)
843
+
844
+ else:
845
+
846
+ app.queue(concurrency_count=511, max_size=1022).launch(
847
+
848
+ server_name="0.0.0.0",
849
+
850
+ inbrowser=not config.noautoopen,
851
+
852
+ server_port=config.listen_port,
853
+
854
+ quiet=True,
855
+
856
+ )