--- library_name: transformers base_model: nguyenkhoa/dinov2_Liveness_detection_v2.1.2 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: dinov2_Liveness_detection_v2.1.3 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nguyenkhoaht002/liveness_detection/runs/svxcqjbb) # dinov2_Liveness_detection_v2.1.3 This model is a fine-tuned version of [nguyenkhoa/dinov2_Liveness_detection_v2.1.2](https://huggingface.co/nguyenkhoa/dinov2_Liveness_detection_v2.1.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0123 - Accuracy: 0.9976 - F1: 0.9976 - Recall: 0.9976 - Precision: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 768 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1276 | 0.3232 | 64 | 0.0239 | 0.992 | 0.9920 | 0.992 | 0.9921 | | 0.0273 | 0.6465 | 128 | 0.0253 | 0.9908 | 0.9908 | 0.9908 | 0.9908 | | 0.0236 | 0.9697 | 192 | 0.0257 | 0.9908 | 0.9908 | 0.9908 | 0.9908 | | 0.015 | 1.2929 | 256 | 0.0223 | 0.9936 | 0.9936 | 0.9936 | 0.9936 | | 0.0133 | 1.6162 | 320 | 0.0144 | 0.9954 | 0.9954 | 0.9954 | 0.9954 | | 0.0149 | 1.9394 | 384 | 0.0271 | 0.9913 | 0.9913 | 0.9913 | 0.9914 | | 0.0097 | 2.2626 | 448 | 0.0234 | 0.9922 | 0.9922 | 0.9922 | 0.9922 | | 0.009 | 2.5859 | 512 | 0.0149 | 0.9954 | 0.9954 | 0.9954 | 0.9954 | | 0.0076 | 2.9091 | 576 | 0.0184 | 0.9952 | 0.9952 | 0.9952 | 0.9952 | | 0.0045 | 3.2323 | 640 | 0.0201 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | | 0.0032 | 3.5556 | 704 | 0.0169 | 0.9958 | 0.9958 | 0.9958 | 0.9958 | | 0.0029 | 3.8788 | 768 | 0.0178 | 0.9961 | 0.9960 | 0.9961 | 0.9961 | | 0.002 | 4.2020 | 832 | 0.0148 | 0.9969 | 0.9969 | 0.9969 | 0.9969 | | 0.001 | 4.5253 | 896 | 0.0135 | 0.9973 | 0.9973 | 0.9973 | 0.9973 | | 0.0007 | 4.8485 | 960 | 0.0123 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0