|
import os |
|
import sys |
|
import torch |
|
from typing import List |
|
from timm.models.resnet import BasicBlock, Bottleneck, ResNet |
|
from .configuration import ResnetConfig |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
PretrainedConfig, |
|
PreTrainedModel, |
|
AutoModelForImageClassification, |
|
) |
|
|
|
|
|
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} |
|
|
|
class ResnetModel(PreTrainedModel): |
|
config_class = ResnetConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
block_layer = BLOCK_MAPPING[config.block_type] |
|
self.model = ResNet( |
|
block_layer, |
|
config.layers, |
|
num_classes=config.num_classes, |
|
in_chans=config.input_channels, |
|
cardinality=config.cardinality, |
|
base_width=config.base_width, |
|
stem_width=config.stem_width, |
|
stem_type=config.stem_type, |
|
avg_down=config.avg_down, |
|
) |
|
|
|
def forward(self, tensor): |
|
return self.model.forward_features(tensor) |
|
|
|
|
|
class ResnetModelForImageClassification(PreTrainedModel): |
|
config_class = ResnetConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
block_layer = BLOCK_MAPPING[config.block_type] |
|
self.model = ResNet( |
|
block_layer, |
|
config.layers, |
|
num_classes=config.num_classes, |
|
in_chans=config.input_channels, |
|
cardinality=config.cardinality, |
|
base_width=config.base_width, |
|
stem_width=config.stem_width, |
|
stem_type=config.stem_type, |
|
avg_down=config.avg_down, |
|
) |
|
|
|
def forward(self, tensor, labels=None): |
|
logits = self.model(tensor) |
|
if labels is not None: |
|
loss = torch.nn.functional.cross_entropy(logits, labels) |
|
return {"loss": loss, "logits": logits} |
|
return {"logits": logits} |
|
|