--- license: apache-2.0 base_model: google/electra-small-discriminator tags: - generated_from_keras_callback model-index: - name: nguyennghia0902/electra-small-discriminator_0.0001_32_15e results: [] --- # nguyennghia0902/electra-small-discriminator_0.0001_32_15e This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5958 - Train End Logits Accuracy: 0.8298 - Train Start Logits Accuracy: 0.8077 - Validation Loss: 0.2565 - Validation End Logits Accuracy: 0.9243 - Validation Start Logits Accuracy: 0.9233 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 23445, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 3.0253 | 0.3302 | 0.2968 | 2.2414 | 0.4704 | 0.4533 | 0 | | 2.3162 | 0.4597 | 0.4260 | 1.8267 | 0.5511 | 0.5364 | 1 | | 2.0285 | 0.5160 | 0.4813 | 1.5472 | 0.6109 | 0.5994 | 2 | | 1.8125 | 0.5587 | 0.5287 | 1.2995 | 0.6688 | 0.6512 | 3 | | 1.6192 | 0.5963 | 0.5677 | 1.0973 | 0.7105 | 0.7030 | 4 | | 1.4482 | 0.6341 | 0.6066 | 0.8998 | 0.7637 | 0.7547 | 5 | | 1.2931 | 0.6694 | 0.6423 | 0.7622 | 0.7920 | 0.7916 | 6 | | 1.1518 | 0.6980 | 0.6741 | 0.6412 | 0.8260 | 0.8197 | 7 | | 1.0351 | 0.7240 | 0.7025 | 0.5316 | 0.8518 | 0.8531 | 8 | | 0.9269 | 0.7488 | 0.7270 | 0.4671 | 0.8701 | 0.8700 | 9 | | 0.8354 | 0.7714 | 0.7489 | 0.3836 | 0.8910 | 0.8896 | 10 | | 0.7520 | 0.7904 | 0.7699 | 0.3342 | 0.9048 | 0.9021 | 11 | | 0.6869 | 0.8056 | 0.7848 | 0.2983 | 0.9134 | 0.9118 | 12 | | 0.6320 | 0.8209 | 0.7994 | 0.2667 | 0.9223 | 0.9205 | 13 | | 0.5958 | 0.8298 | 0.8077 | 0.2565 | 0.9243 | 0.9233 | 14 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2