File size: 1,780 Bytes
583645a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mymodel_LORA_base_10k_2e5_3epoch_batch16_T4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mymodel_LORA_base_10k_2e5_3epoch_batch16_T4

This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9509
- Rouge1: 0.5087
- Rouge2: 0.21
- Rougel: 0.3279
- Rougelsum: 0.3278
- Gen Len: 47.1885

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.904         | 1.0   | 500  | 2.0384          | 0.4986 | 0.1981 | 0.323  | 0.3231    | 54.0445 |
| 2.167         | 2.0   | 1000 | 1.9662          | 0.5068 | 0.2053 | 0.3269 | 0.3268    | 54.8295 |
| 2.1217        | 3.0   | 1500 | 1.9509          | 0.5087 | 0.21   | 0.3279 | 0.3278    | 47.1885 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1