--- license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: mymodel_base_10k_sample_2e5_batchsize32 results: [] --- # mymodel_base_10k_sample_2e5_batchsize32 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8017 - Rouge1: 0.5626 - Rouge2: 0.2589 - Rougel: 0.3631 - Rougelsum: 0.3633 - Gen Len: 38.8535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.0869 | 1.0 | 500 | 1.8225 | 0.5506 | 0.2479 | 0.3552 | 0.3553 | 40.6745 | | 1.8071 | 2.0 | 1000 | 1.8038 | 0.5589 | 0.2523 | 0.3585 | 0.3586 | 39.335 | | 1.6991 | 3.0 | 1500 | 1.8017 | 0.5626 | 0.2589 | 0.3631 | 0.3633 | 38.8535 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0