--- license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: mymodel_base_10k_sample_2e5_v2 results: [] --- # mymodel_base_10k_sample_2e5_v2 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8988 - Rouge1: 0.5793 - Rouge2: 0.2711 - Rougel: 0.3756 - Rougelsum: 0.3756 - Gen Len: 39.782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.9788 | 1.0 | 2000 | 1.8380 | 0.5644 | 0.2515 | 0.3604 | 0.3603 | 42.489 | | 1.7232 | 2.0 | 4000 | 1.8040 | 0.5665 | 0.2592 | 0.3675 | 0.3674 | 39.2215 | | 1.5036 | 3.0 | 6000 | 1.8337 | 0.5682 | 0.26 | 0.3674 | 0.3674 | 38.9015 | | 1.3468 | 4.0 | 8000 | 1.8675 | 0.5728 | 0.2664 | 0.3706 | 0.3707 | 38.9095 | | 1.2546 | 5.0 | 10000 | 1.8988 | 0.5793 | 0.2711 | 0.3756 | 0.3756 | 39.782 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0