--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-2.5E-5rate results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # distilhubert-finetuned-gtzan-2.5E-5rate This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5939 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2487 | 1.0 | 113 | 2.1744 | 0.41 | | 1.7534 | 2.0 | 226 | 1.6280 | 0.65 | | 1.4458 | 3.0 | 339 | 1.2993 | 0.7 | | 1.2271 | 4.0 | 452 | 1.1119 | 0.72 | | 1.115 | 5.0 | 565 | 1.0119 | 0.75 | | 0.834 | 6.0 | 678 | 0.8967 | 0.77 | | 1.0247 | 7.0 | 791 | 0.8154 | 0.78 | | 0.6211 | 8.0 | 904 | 0.7035 | 0.81 | | 0.7136 | 9.0 | 1017 | 0.6755 | 0.8 | | 0.464 | 10.0 | 1130 | 0.6808 | 0.84 | | 0.2952 | 11.0 | 1243 | 0.6245 | 0.8 | | 0.3117 | 12.0 | 1356 | 0.6150 | 0.84 | | 0.24 | 13.0 | 1469 | 0.6000 | 0.82 | | 0.2554 | 14.0 | 1582 | 0.5952 | 0.83 | | 0.2452 | 15.0 | 1695 | 0.5939 | 0.82 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3