ppo-LunarLander-v2 / config.json
nic70's picture
Upload PPO LunarLander-v2 trained agent for RL training Unit 1
0c2e25d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f99ae705750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f99ae7057e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f99ae705870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f99ae705900>", "_build": "<function ActorCriticPolicy._build at 0x7f99ae705990>", "forward": "<function ActorCriticPolicy.forward at 0x7f99ae705a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99ae705ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f99ae705b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f99ae705bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99ae705c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f99ae705cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99ae705d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f99ae710a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 21968, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686386697622572865, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPbHA7+7DIs/gzmMvxpFdb9m/rc/YucPPwAAAAAAAAAAcwXKPWaJqz+2VBw/7Fafvu7787xl+Nk9AAAAAAAAAAAwRAI/MCzNPuZZqj7E4bK/H2A3P22hcb0AAAAAAAAAAPNxCL7KJ58/ryYhv4f58b6wGGk+TcBtPgAAAAAAAAAAmls+PPk6pT/uOj89Hlbsvn72Lj2Ky6o9AAAAAAAAAABK9F4/ITeaPh6znz/uTra/NRQKv/evib4AAAAAAAAAADb+4j7q9jI/AGFYPRyiir8WaD0/ije5PgAAAAAAAAAAAJikO+bntD9ePgI/RhDbPWmAvrtaBOy9AAAAAAAAAADz6QY+vNW5P1344z72Ghu+v+Q4vuygwL0AAAAAAAAAANq34D1e05s/w0n7PtkR6b6b3fK8TaeEPQAAAAAAAAAAHWzLvlvnLj9ht8G+oYSHvweH8L4jc0O+AAAAAAAAAABYR9e+FILLPnwYPL+BIpK/IpZOPdkUA74AAAAAAAAAAAYBrD60rYA/ivYPP2B6ML8srD+6x+kwPgAAAAAAAAAAZjMjPaajrz/p3q0+TFmHviWLf72Hwju+AAAAAAAAAAD1rHO/fsPYPUpptb9WEsq/iYuKPx5cDT8AAAAAAAAAAHo6Dz4Q6D4/usy4PkfkkL99p0w8y9nNOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFUdwL3K0UqMAWyUS3aMAXSUR0ClMhTodMkAdX2UKGgGR8BgvIjlgc94aAdLVWgIR0ClMjfkvK2bdX2UKGgGR8B1noNvwVj7aAdLTmgIR0ClMkeKTB69dX2UKGgGR8Bkg138n/kvaAdLbGgIR0ClMk91EE1VdX2UKGgGR8BspBxFRYRvaAdLbWgIR0ClMlqOtGNJdX2UKGgGR8BXKou9OARTaAdLb2gIR0ClMmt2LYPHdX2UKGgGR8BjtjVQQ+UyaAdLWGgIR0ClMnA0bcXWdX2UKGgGR8Bt5jNKRMewaAdLVGgIR0ClMo5Tho/SdX2UKGgGR8B3oK7e2uxKaAdLY2gIR0ClMo4OlO45dX2UKGgGR8BfVp0CA+Y/aAdLeWgIR0ClMqTfaYeDdX2UKGgGR8Bmwbd56dDqaAdLXWgIR0ClMqk2pAD8dX2UKGgGR8B2K32bobGWaAdLVWgIR0ClMsidrftQdX2UKGgGR8BX4CmdiDujaAdLX2gIR0ClMtSxiXpodX2UKGgGR8BfSTBZZB9kaAdLPWgIR0ClMtXwkPc0dX2UKGgGR8Bk9z2WY4Q0aAdLPmgIR0ClMuR8UmD2dX2UKGgGR8BeHo5T6zmfaAdLa2gIR0ClMuONYKYzdX2UKGgGR8BTthxtHhCMaAdLSmgIR0ClMxtH6MzedX2UKGgGR8B1sU0+C9RKaAdLgWgIR0ClMyeEZiuudX2UKGgGR8BkErSRbKRuaAdLdmgIR0ClMy9L6DXfdX2UKGgGR8Bn4TP6be/IaAdLTWgIR0ClMz7aIvaldX2UKGgGR8BPvciwB5ooaAdLZWgIR0ClMz/nGKhtdX2UKGgGR8Be8KQFLWZraAdLfmgIR0ClM18s189fdX2UKGgGR8B00KOfdyksaAdLVWgIR0ClM4/sNUfgdX2UKGgGR8BXjTq0MPSVaAdLUGgIR0ClM9i6H0sfdX2UKGgGR8BtaJvkzXSSaAdLaWgIR0ClM/jjR2KVdX2UKGgGR8B2yT1f3N9qaAdLhWgIR0ClM/9QO4G2dX2UKGgGR8Btv5MWXTmXaAdLYmgIR0ClNAhsImgKdX2UKGgGR8Bdr0S/TLGJaAdLdGgIR0ClNBb79AHFdX2UKGgGR8BaUG4uscQzaAdLTmgIR0ClNCa2fChwdX2UKGgGR8BVbFCojv/jaAdLP2gIR0ClNCyGzru6dX2UKGgGR8Bgxj1qWTouaAdLZWgIR0ClNC7KA8SxdX2UKGgGR8BuQWWWyC4CaAdLS2gIR0ClNDXwLE1mdX2UKGgGR8BQfBtgrpaBaAdLV2gIR0ClNDt8eCCjdX2UKGgGR8Bs2Xy08eS0aAdLcmgIR0ClNFopx3mndX2UKGgGR8BX/L17IDHPaAdLmWgIR0ClNG6wt8NQdX2UKGgGR8Bwdmgf2bobaAdLYGgIR0ClNGnZsbeedX2UKGgGR0BC69Eb5uZUaAdLhGgIR0ClNIIi1RcedX2UKGgGR8BcX/ACW/rTaAdLaWgIR0ClNJC5uqFRdX2UKGgGR8Bv40Lx7RfGaAdLVWgIR0ClNJ4G2TgVdX2UKGgGR8B0aUqoZQ54aAdLYmgIR0ClNQ8KG+K1dX2UKGgGR8Bjo1eOXE61aAdLVGgIR0ClNRCmEXchdX2UKGgGR8BZNZHd43WGaAdLXGgIR0ClNRvxx1gZdX2UKGgGR8BrWpNO/L1VaAdLTmgIR0ClNRu1fE4vdX2UKGgGR8BkQSAFxGUfaAdLVWgIR0ClNSMFt8/mdX2UKGgGR8BWuSpJf6XTaAdLSmgIR0ClNT0GVzIWdX2UKGgGR8B2Ey49X9zfaAdLZmgIR0ClNT/FirksdX2UKGgGR7/duDSPU8V6aAdLXWgIR0ClNU/ViF0xdX2UKGgGR8BfnbGm1pj+aAdLXmgIR0ClNV30oSctdX2UKGgGR8BRI3rY5DJEaAdLU2gIR0ClNW3w9aEBdX2UKGgGR8BU20cOskpraAdLS2gIR0ClNWu/UONHdX2UKGgGR8BlLXi97F85aAdLZ2gIR0ClNXUcGTs6dX2UKGgGR8B4g+m1pj+aaAdLXGgIR0ClNYTg2qDLdX2UKGgGR8BXcxxPwd8zaAdLdGgIR0ClNZUlAu7IdX2UKGgGR8BwUnB55Z8saAdLTmgIR0ClNZNwaR6odX2UKGgGR8BgEauSwGGEaAdLPmgIR0ClNdg7YChfdX2UKGgGR8Bj/5pYcNpeaAdLQmgIR0ClNe0xVQyidX2UKGgGR8BTxWTPjXFtaAdLS2gIR0ClNfmVJL/TdX2UKGgGR8BQBKg7HQyAaAdLPGgIR0ClNfr4etCBdX2UKGgGR8BxLP029+PSaAdLd2gIR0ClNgWW6bvxdX2UKGgGR8BlLxvBJqZdaAdLTWgIR0ClNgxGUfPpdX2UKGgGR8BZC3sXzlLfaAdLQWgIR0ClNgoz3yqddX2UKGgGR8BcYjtgKF7EaAdLYGgIR0ClNkEuQIUrdX2UKGgGR8BX79ZV4oqkaAdLVmgIR0ClNoTO5avBdX2UKGgGR8BlCKUu+RHPaAdLVWgIR0ClNow0O3DvdX2UKGgGR8Bv+RLmITGpaAdLY2gIR0ClNpQOnVG1dX2UKGgGR8BkITpJPIn0aAdLVGgIR0ClNq+sHSncdX2UKGgGR8Bkvt4mkWRBaAdLa2gIR0ClNsIsRQJpdX2UKGgGR8BhEbqQiiZfaAdLPWgIR0ClNtJul41QdX2UKGgGR8Bo7yWgOBlMaAdLbGgIR0ClNtiiZfD2dX2UKGgGR8BL6mwJPZZkaAdLQmgIR0ClNthsQ/X5dX2UKGgGR8BM4iqIacZtaAdLQGgIR0ClNugQpWmxdX2UKGgGR8Bixa2QXAM2aAdLdGgIR0ClNxuEmICVdX2UKGgGR8BbA8uzyBkJaAdLPWgIR0ClNxkVFhG6dX2UKGgGR8BVWF4TsY2saAdLfGgIR0ClNycBU70WdX2UKGgGR8ByMUqFyq+8aAdLaWgIR0ClN0Vkc0cfdX2UKGgGR8BPY2GATZg5aAdLQGgIR0ClN3NBv73xdX2UKGgGR8Bgke1ndweeaAdLbGgIR0ClN4VWbPQfdX2UKGgGR8BgiwIfKZDzaAdLdGgIR0ClN6Hz6JqJdX2UKGgGR8BToFg2Ifr9aAdLfWgIR0ClN7TPBzmwdX2UKGgGR8BXhG6f8MuwaAdLTGgIR0ClN8+QdS2qdX2UKGgGR8B3ni02LpA2aAdLamgIR0ClOAB/y5I6dX2UKGgGR8BsHqcVgx8EaAdLZmgIR0ClOBrytmthdX2UKGgGR8Bbn0RODaoNaAdLSmgIR0ClOCbQ1JlKdX2UKGgGR8BmvBhUipvQaAdLY2gIR0ClODJQcghbdX2UKGgGR8BxhKK2rn1WaAdLTWgIR0ClODCA2AG0dX2UKGgGR8BhuSIznA6/aAdLfWgIR0ClOE0N8VpLdX2UKGgGR8BfZrGJemelaAdLSWgIR0ClOFJ4KQaKdX2UKGgGR8BkBR9NN8E3aAdLb2gIR0ClOGSjHn2adX2UKGgGR8B9PptrKvFFaAdLf2gIR0ClOKAZsKsudX2UKGgGR8BkTBNIsiB5aAdLe2gIR0ClOKPbfxc3dX2UKGgGR8Bq0hqfvnbJaAdLcmgIR0ClOMZ4wAU+dX2UKGgGR8Bn+ESXdCVsaAdLTmgIR0ClONGsvIwNdX2UKGgGR8Bl6A3Jgb6yaAdLcWgIR0ClOQ77j1f3dX2UKGgGR8B/0rziCJ40aAdLWmgIR0ClORRn3+MqdX2UKGgGR8BcH/C2tuDSaAdLRmgIR0ClOU02cawVdX2UKGgGR8B5hCSgXdj5aAdLdmgIR0ClOU5M10kodX2UKGgGR8BlBjvZyuIRaAdLf2gIR0ClOVSDyvs7dX2UKGgGR8B02Tt2LYPHaAdLXGgIR0ClOWcxj8UFdX2UKGgGR8Br49RWLgn/aAdLWGgIR0ClOWwmE5AAdX2UKGgGR8Bl38IiTt9haAdLZGgIR0ClOZjW07bMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}