nickmuchi commited on
Commit
7f415f9
·
1 Parent(s): e140ff3

Update README.Md

Browse files
Files changed (1) hide show
  1. README.Md +68 -0
README.Md CHANGED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - object-detection
5
+ - license-plate-detection
6
+ - vehicle-detection
7
+ datasets:
8
+ - coco
9
+ - license-plate-detection
10
+ widget:
11
+ - src: https://drive.google.com/uc?id=1VwYLbGak5c-2P5qdvfWVOeg7DTDYPbro
12
+ example_title: "City"
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
14
+ example_title: "Parking"
15
+ metrics:
16
+ - average precision
17
+ - recall
18
+ - IOU
19
+ model-index:
20
+ - name: yolos-small-rego-plates-detection
21
+ results: []
22
+ ---
23
+ # YOLOS (small-sized) model
24
+ The original YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
25
+ This model was further fine-tuned on the [license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 735 images of annotations categorised as "vehicle" and "license-plate". The model was trained for 200 epochs on a single GPU using Google Colab
26
+ ## Model description
27
+ YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
28
+ ## Intended uses & limitations
29
+ You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models.
30
+ ### How to use
31
+ Here is how to use this model:
32
+ ```python
33
+ from transformers import YolosFeatureExtractor, YolosForObjectDetection
34
+ from PIL import Image
35
+ import requests
36
+ url = 'https://drive.google.com/uc?id=1VwYLbGak5c-2P5qdvfWVOeg7DTDYPbro'
37
+ image = Image.open(requests.get(url, stream=True).raw)
38
+ feature_extractor = YolosFeatureExtractor.from_pretrained('nickmuchi/yolos-small-rego-plates-detection')
39
+ model = YolosForObjectDetection.from_pretrained('nickmuchi/yolos-small-finetuned-masks')
40
+ inputs = feature_extractor(images=image, return_tensors="pt")
41
+ outputs = model(**inputs)
42
+ # model predicts bounding boxes and corresponding face mask detection classes
43
+ logits = outputs.logits
44
+ bboxes = outputs.pred_boxes
45
+ ```
46
+ Currently, both the feature extractor and model support PyTorch.
47
+ ## Training data
48
+ The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively.
49
+ ### Training
50
+ This model was fine-tuned for 200 epochs on the [license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection").
51
+ ## Evaluation results
52
+ This model achieves an AP (average precision) of **47.9**.
53
+ Accumulating evaluation results...
54
+ IoU metric: bbox
55
+ Metrics | Metric Parameter | Location | Dets | Value |
56
+ ---------------- | --------------------- | ------------| ------------- | ----- |
57
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.479 |
58
+ Average Precision | (AP) @[ IoU=0.50 | area= all | maxDets=100 ] | 0.752 |
59
+ Average Precision | (AP) @[ IoU=0.75 | area= all | maxDets=100 ] | 0.555 |
60
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.147 |
61
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.420 |
62
+ Average Precision | (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.804 |
63
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] | 0.437 |
64
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] | 0.641 |
65
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.676 |
66
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.268 |
67
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.641 |
68
+ Average Recall | (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.870 |