Update README.md
Browse files
README.md
CHANGED
@@ -1,18 +1,24 @@
|
|
1 |
---
|
2 |
-
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
# {
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
16 |
<!--- Describe your model here -->
|
17 |
|
18 |
## Usage (Sentence-Transformers)
|
@@ -27,11 +33,12 @@ Then you can use the model like this:
|
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
-
sentences = ["
|
31 |
|
32 |
-
model = SentenceTransformer('
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
|
|
35 |
```
|
36 |
|
37 |
|
@@ -52,11 +59,11 @@ def mean_pooling(model_output, attention_mask):
|
|
52 |
|
53 |
|
54 |
# Sentences we want sentence embeddings for
|
55 |
-
sentences = ['
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
59 |
-
model = AutoModel.from_pretrained('
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -70,6 +77,7 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
70 |
|
71 |
print("Sentence embeddings:")
|
72 |
print(sentence_embeddings)
|
|
|
73 |
```
|
74 |
|
75 |
|
|
|
1 |
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- stsb_multi_mt
|
11 |
+
- unicamp-dl/mmarco
|
12 |
+
language:
|
13 |
+
- it
|
14 |
+
library_name: sentence-transformers
|
15 |
---
|
16 |
|
17 |
+
# {multi-sentence-BERTino}
|
18 |
|
19 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
20 |
|
21 |
+
This model is trained from [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) using [mmarco italian](https://huggingface.co/datasets/unicamp-dl/mmarco) (200K) and [stsb italian](https://huggingface.co/datasets/stsb_multi_mt).
|
22 |
<!--- Describe your model here -->
|
23 |
|
24 |
## Usage (Sentence-Transformers)
|
|
|
33 |
|
34 |
```python
|
35 |
from sentence_transformers import SentenceTransformer
|
36 |
+
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
37 |
|
38 |
+
model = SentenceTransformer('nickprock/multi-sentence-BERTino')
|
39 |
embeddings = model.encode(sentences)
|
40 |
print(embeddings)
|
41 |
+
|
42 |
```
|
43 |
|
44 |
|
|
|
59 |
|
60 |
|
61 |
# Sentences we want sentence embeddings for
|
62 |
+
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
63 |
|
64 |
# Load model from HuggingFace Hub
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained('nickprock/multi-sentence-BERTino')
|
66 |
+
model = AutoModel.from_pretrained('nickprock/multi-sentence-BERTino')
|
67 |
|
68 |
# Tokenize sentences
|
69 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
77 |
|
78 |
print("Sentence embeddings:")
|
79 |
print(sentence_embeddings)
|
80 |
+
|
81 |
```
|
82 |
|
83 |
|