nickprock commited on
Commit
7c77a5b
1 Parent(s): 5964b16

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - banking77
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: xlm-roberta-base-banking77-classification
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: banking77
17
+ type: banking77
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9321428571428572
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # xlm-roberta-base-banking77-classification
31
+
32
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the banking77 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.3034
35
+ - Accuracy: 0.9321
36
+ - F1 Score: 0.9321
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 20
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
67
+ | 3.8002 | 1.0 | 157 | 2.7771 | 0.5159 | 0.4483 |
68
+ | 2.4006 | 2.0 | 314 | 1.6937 | 0.7140 | 0.6720 |
69
+ | 1.4633 | 3.0 | 471 | 1.0385 | 0.8308 | 0.8153 |
70
+ | 0.9234 | 4.0 | 628 | 0.7008 | 0.8789 | 0.8761 |
71
+ | 0.6163 | 5.0 | 785 | 0.5029 | 0.9068 | 0.9063 |
72
+ | 0.4282 | 6.0 | 942 | 0.4084 | 0.9123 | 0.9125 |
73
+ | 0.3203 | 7.0 | 1099 | 0.3515 | 0.9253 | 0.9253 |
74
+ | 0.245 | 8.0 | 1256 | 0.3295 | 0.9227 | 0.9225 |
75
+ | 0.1863 | 9.0 | 1413 | 0.3092 | 0.9269 | 0.9269 |
76
+ | 0.1518 | 10.0 | 1570 | 0.2901 | 0.9338 | 0.9338 |
77
+ | 0.1179 | 11.0 | 1727 | 0.2938 | 0.9318 | 0.9319 |
78
+ | 0.0969 | 12.0 | 1884 | 0.2906 | 0.9328 | 0.9328 |
79
+ | 0.0805 | 13.0 | 2041 | 0.2963 | 0.9295 | 0.9295 |
80
+ | 0.063 | 14.0 | 2198 | 0.2998 | 0.9289 | 0.9288 |
81
+ | 0.0554 | 15.0 | 2355 | 0.2933 | 0.9351 | 0.9349 |
82
+ | 0.046 | 16.0 | 2512 | 0.2960 | 0.9328 | 0.9326 |
83
+ | 0.04 | 17.0 | 2669 | 0.3032 | 0.9318 | 0.9318 |
84
+ | 0.035 | 18.0 | 2826 | 0.3061 | 0.9312 | 0.9312 |
85
+ | 0.0317 | 19.0 | 2983 | 0.3030 | 0.9331 | 0.9330 |
86
+ | 0.0315 | 20.0 | 3140 | 0.3034 | 0.9321 | 0.9321 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.21.1
92
+ - Pytorch 1.12.1+cu113
93
+ - Datasets 2.4.0
94
+ - Tokenizers 0.12.1