update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- banking77
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: xlm-roberta-base-banking77-classification
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: banking77
|
17 |
+
type: banking77
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9321428571428572
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# xlm-roberta-base-banking77-classification
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the banking77 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.3034
|
35 |
+
- Accuracy: 0.9321
|
36 |
+
- F1 Score: 0.9321
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-05
|
56 |
+
- train_batch_size: 64
|
57 |
+
- eval_batch_size: 64
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
|
67 |
+
| 3.8002 | 1.0 | 157 | 2.7771 | 0.5159 | 0.4483 |
|
68 |
+
| 2.4006 | 2.0 | 314 | 1.6937 | 0.7140 | 0.6720 |
|
69 |
+
| 1.4633 | 3.0 | 471 | 1.0385 | 0.8308 | 0.8153 |
|
70 |
+
| 0.9234 | 4.0 | 628 | 0.7008 | 0.8789 | 0.8761 |
|
71 |
+
| 0.6163 | 5.0 | 785 | 0.5029 | 0.9068 | 0.9063 |
|
72 |
+
| 0.4282 | 6.0 | 942 | 0.4084 | 0.9123 | 0.9125 |
|
73 |
+
| 0.3203 | 7.0 | 1099 | 0.3515 | 0.9253 | 0.9253 |
|
74 |
+
| 0.245 | 8.0 | 1256 | 0.3295 | 0.9227 | 0.9225 |
|
75 |
+
| 0.1863 | 9.0 | 1413 | 0.3092 | 0.9269 | 0.9269 |
|
76 |
+
| 0.1518 | 10.0 | 1570 | 0.2901 | 0.9338 | 0.9338 |
|
77 |
+
| 0.1179 | 11.0 | 1727 | 0.2938 | 0.9318 | 0.9319 |
|
78 |
+
| 0.0969 | 12.0 | 1884 | 0.2906 | 0.9328 | 0.9328 |
|
79 |
+
| 0.0805 | 13.0 | 2041 | 0.2963 | 0.9295 | 0.9295 |
|
80 |
+
| 0.063 | 14.0 | 2198 | 0.2998 | 0.9289 | 0.9288 |
|
81 |
+
| 0.0554 | 15.0 | 2355 | 0.2933 | 0.9351 | 0.9349 |
|
82 |
+
| 0.046 | 16.0 | 2512 | 0.2960 | 0.9328 | 0.9326 |
|
83 |
+
| 0.04 | 17.0 | 2669 | 0.3032 | 0.9318 | 0.9318 |
|
84 |
+
| 0.035 | 18.0 | 2826 | 0.3061 | 0.9312 | 0.9312 |
|
85 |
+
| 0.0317 | 19.0 | 2983 | 0.3030 | 0.9331 | 0.9330 |
|
86 |
+
| 0.0315 | 20.0 | 3140 | 0.3034 | 0.9321 | 0.9321 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.21.1
|
92 |
+
- Pytorch 1.12.1+cu113
|
93 |
+
- Datasets 2.4.0
|
94 |
+
- Tokenizers 0.12.1
|