nicoboss commited on
Commit
5de68e5
·
verified ·
1 Parent(s): d027c1b

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. README.md +149 -0
  3. adapter_config.json +37 -0
  4. adapter_model.safetensors +3 -0
  5. checkpoint-117/README.md +202 -0
  6. checkpoint-117/adapter_config.json +37 -0
  7. checkpoint-117/adapter_model.safetensors +3 -0
  8. checkpoint-117/optimizer.bin +3 -0
  9. checkpoint-117/pytorch_model_fsdp.bin +3 -0
  10. checkpoint-117/rng_state_0.pth +3 -0
  11. checkpoint-117/rng_state_1.pth +3 -0
  12. checkpoint-117/scheduler.pt +3 -0
  13. checkpoint-117/special_tokens_map.json +23 -0
  14. checkpoint-117/tokenizer.json +3 -0
  15. checkpoint-117/tokenizer_config.json +195 -0
  16. checkpoint-117/trainer_state.json +852 -0
  17. checkpoint-117/training_args.bin +3 -0
  18. checkpoint-234/README.md +202 -0
  19. checkpoint-234/adapter_config.json +37 -0
  20. checkpoint-234/adapter_model.safetensors +3 -0
  21. checkpoint-234/optimizer.bin +3 -0
  22. checkpoint-234/pytorch_model_fsdp.bin +3 -0
  23. checkpoint-234/rng_state_0.pth +3 -0
  24. checkpoint-234/rng_state_1.pth +3 -0
  25. checkpoint-234/scheduler.pt +3 -0
  26. checkpoint-234/special_tokens_map.json +23 -0
  27. checkpoint-234/tokenizer.json +3 -0
  28. checkpoint-234/tokenizer_config.json +195 -0
  29. checkpoint-234/trainer_state.json +1671 -0
  30. checkpoint-234/training_args.bin +3 -0
  31. checkpoint-351/README.md +202 -0
  32. checkpoint-351/adapter_config.json +37 -0
  33. checkpoint-351/adapter_model.safetensors +3 -0
  34. checkpoint-351/optimizer.bin +3 -0
  35. checkpoint-351/pytorch_model_fsdp.bin +3 -0
  36. checkpoint-351/rng_state_0.pth +3 -0
  37. checkpoint-351/rng_state_1.pth +3 -0
  38. checkpoint-351/scheduler.pt +3 -0
  39. checkpoint-351/special_tokens_map.json +23 -0
  40. checkpoint-351/tokenizer.json +3 -0
  41. checkpoint-351/tokenizer_config.json +195 -0
  42. checkpoint-351/trainer_state.json +2490 -0
  43. checkpoint-351/training_args.bin +3 -0
  44. checkpoint-468/README.md +202 -0
  45. checkpoint-468/adapter_config.json +37 -0
  46. checkpoint-468/adapter_model.safetensors +3 -0
  47. checkpoint-468/optimizer.bin +3 -0
  48. checkpoint-468/pytorch_model_fsdp.bin +3 -0
  49. checkpoint-468/rng_state_0.pth +3 -0
  50. checkpoint-468/rng_state_1.pth +3 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-117/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-234/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-351/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-468/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - Guilherme34/uncensor
7
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
8
+ model-index:
9
+ - name: outputs/out/DeepSeek-R1-Distill-Qwen-7B-Uncensored
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.6.0`
20
+ ```yaml
21
+ base_model: /cpool/DeepSeek-R1-Distill-Qwen-7B
22
+
23
+ load_in_8bit: false
24
+ load_in_4bit: false
25
+ strict: false
26
+
27
+ datasets:
28
+ - path: Guilherme34/uncensor
29
+ type: chat_template
30
+ chat_template: llama3
31
+ field_messages: messages
32
+ message_field_role: role
33
+ message_field_content: content
34
+ roles:
35
+ system:
36
+ - system
37
+ user:
38
+ - user
39
+ assistant:
40
+ - assistant
41
+ dataset_prepared_path: last_run_prepared
42
+ val_set_size: 0.0
43
+ output_dir: ./outputs/out/DeepSeek-R1-Distill-Qwen-7B-Uncensored
44
+ save_safetensors: true
45
+
46
+ sequence_len: 4096
47
+ sample_packing: false
48
+ pad_to_sequence_len: true
49
+
50
+ adapter: lora
51
+ lora_model_dir:
52
+ lora_r: 32
53
+ lora_alpha: 16
54
+ lora_dropout: 0.05
55
+ lora_target_linear: true
56
+ lora_fan_in_fan_out:
57
+
58
+ gradient_accumulation_steps: 4
59
+ micro_batch_size: 1
60
+ num_epochs: 4
61
+ optimizer: adamw_torch
62
+ lr_scheduler: cosine
63
+ learning_rate: 0.0002
64
+
65
+ train_on_inputs: false
66
+ group_by_length: false
67
+ bf16: true
68
+ tf32: true
69
+
70
+ gradient_checkpointing: true
71
+ gradient_checkpointing_kwargs:
72
+ use_reentrant: true
73
+ logging_steps: 1
74
+ flash_attention: true
75
+
76
+ warmup_steps: 10
77
+ evals_per_epoch: 1
78
+ eval_table_size: 20
79
+ eval_max_new_tokens: 128
80
+ saves_per_epoch: 1
81
+ save_total_limit: 20
82
+ debug:
83
+ deepspeed:
84
+ weight_decay: 0.0
85
+ fsdp:
86
+ - full_shard
87
+ - auto_wrap
88
+ fsdp_config:
89
+ fsdp_limit_all_gathers: true
90
+ fsdp_sync_module_states: true
91
+ fsdp_offload_params: true
92
+ fsdp_use_orig_params: false
93
+ fsdp_cpu_ram_efficient_loading: true
94
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
95
+ fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
96
+ fsdp_state_dict_type: FULL_STATE_DICT
97
+ fsdp_sharding_strategy: FULL_SHARD
98
+ special_tokens:
99
+
100
+ ```
101
+
102
+ </details><br>
103
+
104
+ # outputs/out/DeepSeek-R1-Distill-Qwen-7B-Uncensored
105
+
106
+ This model was trained from scratch on the Guilherme34/uncensor dataset.
107
+
108
+ ## Model description
109
+
110
+ More information needed
111
+
112
+ ## Intended uses & limitations
113
+
114
+ More information needed
115
+
116
+ ## Training and evaluation data
117
+
118
+ More information needed
119
+
120
+ ## Training procedure
121
+
122
+ ### Training hyperparameters
123
+
124
+ The following hyperparameters were used during training:
125
+ - learning_rate: 0.0002
126
+ - train_batch_size: 1
127
+ - eval_batch_size: 1
128
+ - seed: 42
129
+ - distributed_type: multi-GPU
130
+ - num_devices: 2
131
+ - gradient_accumulation_steps: 4
132
+ - total_train_batch_size: 8
133
+ - total_eval_batch_size: 2
134
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
135
+ - lr_scheduler_type: cosine
136
+ - lr_scheduler_warmup_steps: 10
137
+ - num_epochs: 4
138
+
139
+ ### Training results
140
+
141
+
142
+
143
+ ### Framework versions
144
+
145
+ - PEFT 0.14.0
146
+ - Transformers 4.47.1
147
+ - Pytorch 2.5.1+cu124
148
+ - Datasets 3.2.0
149
+ - Tokenizers 0.21.0
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/cpool/DeepSeek-R1-Distill-Qwen-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "up_proj",
27
+ "k_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "q_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76b45071fea0cc56ec629a56bd69f7af8a8df37bfed0de5e375d9b49525015b3
3
+ size 2497283840
checkpoint-117/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /cpool/DeepSeek-R1-Distill-Qwen-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-117/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/cpool/DeepSeek-R1-Distill-Qwen-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "up_proj",
27
+ "k_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "q_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-117/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5249860a8d8ae91516f00665337067203028ce305712b40bef1b8258a4ed91a
3
+ size 2497283840
checkpoint-117/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d13becf0ae5915b0ac5a4616c237c513a13e142c755b0f8db04fb153beead03d
3
+ size 646273514
checkpoint-117/pytorch_model_fsdp.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dad05f82a4a75a98df03e4912dcde8adc4c6717d397af003f0006b1d2c2e95b
3
+ size 323107814
checkpoint-117/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f54843c3190814def2c41d4be5521b99fcf637f808a0135c89d1ef0964f4f6dd
3
+ size 14512
checkpoint-117/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d1187b590b65941d7f95bdeca758868a76aa6d8fa9b8824430cf9edfdae5df2
3
+ size 14512
checkpoint-117/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6bb887f60ead14806ab781b36a2d2c6f0961c257f4780e647407683f4efc61
3
+ size 1064
checkpoint-117/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-117/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893
3
+ size 11422778
checkpoint-117/tokenizer_config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin��>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
185
+ "clean_up_tokenization_spaces": false,
186
+ "eos_token": "<|end▁of▁sentence|>",
187
+ "extra_special_tokens": {},
188
+ "legacy": true,
189
+ "model_max_length": 16384,
190
+ "pad_token": "<|end▁of▁sentence|>",
191
+ "sp_model_kwargs": {},
192
+ "tokenizer_class": "LlamaTokenizer",
193
+ "unk_token": null,
194
+ "use_default_system_prompt": false
195
+ }
checkpoint-117/trainer_state.json ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 117,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008547008547008548,
13
+ "grad_norm": 0.15355850756168365,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.4892,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017094017094017096,
20
+ "grad_norm": 0.1224861666560173,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.1445,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.02564102564102564,
27
+ "grad_norm": 0.1645984649658203,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.5538,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.03418803418803419,
34
+ "grad_norm": 0.125856414437294,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.7634,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042735042735042736,
41
+ "grad_norm": 0.1726977378129959,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.4105,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.05128205128205128,
48
+ "grad_norm": 0.18316921591758728,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.8364,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05982905982905983,
55
+ "grad_norm": 0.17618055641651154,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.3885,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06837606837606838,
62
+ "grad_norm": 0.17036275565624237,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.3574,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.07692307692307693,
69
+ "grad_norm": 0.18832312524318695,
70
+ "learning_rate": 0.00018,
71
+ "loss": 1.2256,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08547008547008547,
76
+ "grad_norm": 0.22157786786556244,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.515,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09401709401709402,
83
+ "grad_norm": 0.21728643774986267,
84
+ "learning_rate": 0.0001999976474595967,
85
+ "loss": 1.4505,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.10256410256410256,
90
+ "grad_norm": 0.16113220155239105,
91
+ "learning_rate": 0.00019999058994907564,
92
+ "loss": 1.132,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.1111111111111111,
97
+ "grad_norm": 0.1798534393310547,
98
+ "learning_rate": 0.00019997882780049847,
99
+ "loss": 1.2355,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11965811965811966,
104
+ "grad_norm": 0.19335126876831055,
105
+ "learning_rate": 0.0001999623615672837,
106
+ "loss": 1.4485,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.1282051282051282,
111
+ "grad_norm": 0.14973561465740204,
112
+ "learning_rate": 0.00019994119202418098,
113
+ "loss": 1.4852,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13675213675213677,
118
+ "grad_norm": 0.1763419359922409,
119
+ "learning_rate": 0.00019991532016723439,
120
+ "loss": 1.0831,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.1452991452991453,
125
+ "grad_norm": 0.148220494389534,
126
+ "learning_rate": 0.00019988474721373568,
127
+ "loss": 1.5454,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.15384615384615385,
132
+ "grad_norm": 0.1581086665391922,
133
+ "learning_rate": 0.00019984947460216707,
134
+ "loss": 0.9387,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.1623931623931624,
139
+ "grad_norm": 0.1937003880739212,
140
+ "learning_rate": 0.00019980950399213344,
141
+ "loss": 1.1612,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17094017094017094,
146
+ "grad_norm": 0.15193545818328857,
147
+ "learning_rate": 0.00019976483726428422,
148
+ "loss": 0.9678,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1794871794871795,
153
+ "grad_norm": 0.17265811562538147,
154
+ "learning_rate": 0.0001997154765202251,
155
+ "loss": 1.0147,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18803418803418803,
160
+ "grad_norm": 0.16466519236564636,
161
+ "learning_rate": 0.00019966142408241901,
162
+ "loss": 1.1492,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19658119658119658,
167
+ "grad_norm": 0.17746295034885406,
168
+ "learning_rate": 0.00019960268249407675,
169
+ "loss": 1.2277,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.20512820512820512,
174
+ "grad_norm": 0.1838495433330536,
175
+ "learning_rate": 0.00019953925451903756,
176
+ "loss": 1.1559,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21367521367521367,
181
+ "grad_norm": 0.1542479395866394,
182
+ "learning_rate": 0.0001994711431416389,
183
+ "loss": 1.855,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.2222222222222222,
188
+ "grad_norm": 0.1788703054189682,
189
+ "learning_rate": 0.00019939835156657616,
190
+ "loss": 1.6273,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.23076923076923078,
195
+ "grad_norm": 0.15661294758319855,
196
+ "learning_rate": 0.00019932088321875172,
197
+ "loss": 1.0783,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23931623931623933,
202
+ "grad_norm": 0.1869712620973587,
203
+ "learning_rate": 0.00019923874174311394,
204
+ "loss": 0.9181,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24786324786324787,
209
+ "grad_norm": 0.14521349966526031,
210
+ "learning_rate": 0.0001991519310044857,
211
+ "loss": 1.4428,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.2564102564102564,
216
+ "grad_norm": 0.17194955050945282,
217
+ "learning_rate": 0.00019906045508738228,
218
+ "loss": 1.3213,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26495726495726496,
223
+ "grad_norm": 0.14739835262298584,
224
+ "learning_rate": 0.0001989643182958196,
225
+ "loss": 0.9933,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.27350427350427353,
230
+ "grad_norm": 0.17825335264205933,
231
+ "learning_rate": 0.00019886352515311134,
232
+ "loss": 1.034,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.28205128205128205,
237
+ "grad_norm": 0.16200387477874756,
238
+ "learning_rate": 0.0001987580804016563,
239
+ "loss": 1.3064,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.2905982905982906,
244
+ "grad_norm": 0.170911967754364,
245
+ "learning_rate": 0.00019864798900271532,
246
+ "loss": 1.2321,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.29914529914529914,
251
+ "grad_norm": 0.16599859297275543,
252
+ "learning_rate": 0.0001985332561361776,
253
+ "loss": 0.9447,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3076923076923077,
258
+ "grad_norm": 0.14686603844165802,
259
+ "learning_rate": 0.00019841388720031727,
260
+ "loss": 0.8823,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3162393162393162,
265
+ "grad_norm": 0.1870049089193344,
266
+ "learning_rate": 0.00019828988781153917,
267
+ "loss": 1.1041,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.3247863247863248,
272
+ "grad_norm": 0.1619299054145813,
273
+ "learning_rate": 0.00019816126380411476,
274
+ "loss": 0.9918,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3333333333333333,
279
+ "grad_norm": 0.18731147050857544,
280
+ "learning_rate": 0.00019802802122990758,
281
+ "loss": 1.0642,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3418803418803419,
286
+ "grad_norm": 0.17905616760253906,
287
+ "learning_rate": 0.00019789016635808837,
288
+ "loss": 1.0877,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.3504273504273504,
293
+ "grad_norm": 0.15318270027637482,
294
+ "learning_rate": 0.00019774770567484022,
295
+ "loss": 1.2165,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.358974358974359,
300
+ "grad_norm": 0.14854711294174194,
301
+ "learning_rate": 0.00019760064588305345,
302
+ "loss": 0.9812,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36752136752136755,
307
+ "grad_norm": 0.15519340336322784,
308
+ "learning_rate": 0.00019744899390201006,
309
+ "loss": 0.9977,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37606837606837606,
314
+ "grad_norm": 0.1589617133140564,
315
+ "learning_rate": 0.0001972927568670583,
316
+ "loss": 1.4097,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.38461538461538464,
321
+ "grad_norm": 0.17286093533039093,
322
+ "learning_rate": 0.00019713194212927696,
323
+ "loss": 1.1385,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39316239316239315,
328
+ "grad_norm": 0.19325074553489685,
329
+ "learning_rate": 0.00019696655725512933,
330
+ "loss": 0.9997,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4017094017094017,
335
+ "grad_norm": 0.18447531759738922,
336
+ "learning_rate": 0.00019679661002610743,
337
+ "loss": 1.0873,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.41025641025641024,
342
+ "grad_norm": 0.16223366558551788,
343
+ "learning_rate": 0.00019662210843836574,
344
+ "loss": 0.99,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.4188034188034188,
349
+ "grad_norm": 0.1919640749692917,
350
+ "learning_rate": 0.0001964430607023449,
351
+ "loss": 1.0171,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.42735042735042733,
356
+ "grad_norm": 0.22606882452964783,
357
+ "learning_rate": 0.00019625947524238563,
358
+ "loss": 1.4172,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4358974358974359,
363
+ "grad_norm": 0.17758312821388245,
364
+ "learning_rate": 0.00019607136069633212,
365
+ "loss": 0.9964,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4444444444444444,
370
+ "grad_norm": 0.16785483062267303,
371
+ "learning_rate": 0.0001958787259151258,
372
+ "loss": 0.9883,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.452991452991453,
377
+ "grad_norm": 0.19499914348125458,
378
+ "learning_rate": 0.00019568157996238884,
379
+ "loss": 1.0293,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.46153846153846156,
384
+ "grad_norm": 0.15674076974391937,
385
+ "learning_rate": 0.0001954799321139975,
386
+ "loss": 1.3643,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4700854700854701,
391
+ "grad_norm": 0.16759538650512695,
392
+ "learning_rate": 0.00019527379185764612,
393
+ "loss": 0.8998,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47863247863247865,
398
+ "grad_norm": 0.20853222906589508,
399
+ "learning_rate": 0.00019506316889240027,
400
+ "loss": 1.4597,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.48717948717948717,
405
+ "grad_norm": 0.18584011495113373,
406
+ "learning_rate": 0.00019484807312824067,
407
+ "loss": 0.8848,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49572649572649574,
412
+ "grad_norm": 0.24146708846092224,
413
+ "learning_rate": 0.0001946285146855968,
414
+ "loss": 1.0529,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5042735042735043,
419
+ "grad_norm": 0.20457321405410767,
420
+ "learning_rate": 0.0001944045038948709,
421
+ "loss": 0.9917,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.5128205128205128,
426
+ "grad_norm": 0.21354275941848755,
427
+ "learning_rate": 0.00019417605129595157,
428
+ "loss": 0.9096,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5213675213675214,
433
+ "grad_norm": 0.2198089212179184,
434
+ "learning_rate": 0.0001939431676377183,
435
+ "loss": 0.9228,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5299145299145299,
440
+ "grad_norm": 0.18545866012573242,
441
+ "learning_rate": 0.0001937058638775353,
442
+ "loss": 0.8399,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5384615384615384,
447
+ "grad_norm": 0.1578792780637741,
448
+ "learning_rate": 0.00019346415118073632,
449
+ "loss": 1.6315,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5470085470085471,
454
+ "grad_norm": 0.23443493247032166,
455
+ "learning_rate": 0.00019321804092009906,
456
+ "loss": 1.0905,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5555555555555556,
461
+ "grad_norm": 0.20623010396957397,
462
+ "learning_rate": 0.00019296754467531014,
463
+ "loss": 0.9367,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5641025641025641,
468
+ "grad_norm": 0.24046015739440918,
469
+ "learning_rate": 0.00019271267423242024,
470
+ "loss": 0.9195,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5726495726495726,
475
+ "grad_norm": 0.22675752639770508,
476
+ "learning_rate": 0.00019245344158328972,
477
+ "loss": 1.1275,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5811965811965812,
482
+ "grad_norm": 0.22297680377960205,
483
+ "learning_rate": 0.0001921898589250242,
484
+ "loss": 0.9244,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5897435897435898,
489
+ "grad_norm": 0.21324071288108826,
490
+ "learning_rate": 0.0001919219386594007,
491
+ "loss": 0.9706,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5982905982905983,
496
+ "grad_norm": 0.21497191488742828,
497
+ "learning_rate": 0.00019164969339228422,
498
+ "loss": 1.0559,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6068376068376068,
503
+ "grad_norm": 0.2526251971721649,
504
+ "learning_rate": 0.00019137313593303463,
505
+ "loss": 1.0632,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6153846153846154,
510
+ "grad_norm": 0.19590331614017487,
511
+ "learning_rate": 0.00019109227929390378,
512
+ "loss": 1.8134,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6239316239316239,
517
+ "grad_norm": 0.21532683074474335,
518
+ "learning_rate": 0.00019080713668942356,
519
+ "loss": 0.9466,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6324786324786325,
524
+ "grad_norm": 0.2264883816242218,
525
+ "learning_rate": 0.00019051772153578389,
526
+ "loss": 0.8941,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.6410256410256411,
531
+ "grad_norm": 0.22985824942588806,
532
+ "learning_rate": 0.00019022404745020163,
533
+ "loss": 0.8991,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6495726495726496,
538
+ "grad_norm": 0.19453634321689606,
539
+ "learning_rate": 0.00018992612825027976,
540
+ "loss": 0.9837,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6581196581196581,
545
+ "grad_norm": 0.2547195851802826,
546
+ "learning_rate": 0.0001896239779533575,
547
+ "loss": 1.1035,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6666666666666666,
552
+ "grad_norm": 0.20812910795211792,
553
+ "learning_rate": 0.00018931761077585035,
554
+ "loss": 0.8916,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6752136752136753,
559
+ "grad_norm": 0.2176084816455841,
560
+ "learning_rate": 0.00018900704113258165,
561
+ "loss": 0.8826,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6837606837606838,
566
+ "grad_norm": 0.2221064418554306,
567
+ "learning_rate": 0.00018869228363610404,
568
+ "loss": 0.9069,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6923076923076923,
573
+ "grad_norm": 0.2675364911556244,
574
+ "learning_rate": 0.00018837335309601213,
575
+ "loss": 1.035,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.7008547008547008,
580
+ "grad_norm": 0.1994653195142746,
581
+ "learning_rate": 0.00018805026451824546,
582
+ "loss": 1.5854,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7094017094017094,
587
+ "grad_norm": 0.20346811413764954,
588
+ "learning_rate": 0.00018772303310438275,
589
+ "loss": 1.4788,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.717948717948718,
594
+ "grad_norm": 0.22119802236557007,
595
+ "learning_rate": 0.00018739167425092644,
596
+ "loss": 1.4946,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7264957264957265,
601
+ "grad_norm": 0.2174052894115448,
602
+ "learning_rate": 0.00018705620354857833,
603
+ "loss": 0.8667,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7350427350427351,
608
+ "grad_norm": 0.2322807013988495,
609
+ "learning_rate": 0.00018671663678150607,
610
+ "loss": 0.861,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7435897435897436,
615
+ "grad_norm": 0.22151263058185577,
616
+ "learning_rate": 0.0001863729899266004,
617
+ "loss": 0.8966,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7521367521367521,
622
+ "grad_norm": 0.243766650557518,
623
+ "learning_rate": 0.0001860252791527236,
624
+ "loss": 1.2998,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7606837606837606,
629
+ "grad_norm": 0.19212521612644196,
630
+ "learning_rate": 0.00018567352081994852,
631
+ "loss": 1.5215,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.7692307692307693,
636
+ "grad_norm": 0.20964723825454712,
637
+ "learning_rate": 0.00018531773147878895,
638
+ "loss": 1.4717,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7777777777777778,
643
+ "grad_norm": 0.24561531841754913,
644
+ "learning_rate": 0.0001849579278694209,
645
+ "loss": 0.9569,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7863247863247863,
650
+ "grad_norm": 0.23924781382083893,
651
+ "learning_rate": 0.00018459412692089494,
652
+ "loss": 0.9441,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7948717948717948,
657
+ "grad_norm": 0.2302614450454712,
658
+ "learning_rate": 0.0001842263457503397,
659
+ "loss": 0.8417,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8034188034188035,
664
+ "grad_norm": 0.24661926925182343,
665
+ "learning_rate": 0.00018385460166215638,
666
+ "loss": 1.1297,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.811965811965812,
671
+ "grad_norm": 0.24925513565540314,
672
+ "learning_rate": 0.00018347891214720477,
673
+ "loss": 0.8999,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8205128205128205,
678
+ "grad_norm": 0.19934344291687012,
679
+ "learning_rate": 0.00018309929488198012,
680
+ "loss": 1.4818,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8290598290598291,
685
+ "grad_norm": 0.24845215678215027,
686
+ "learning_rate": 0.00018271576772778154,
687
+ "loss": 0.9454,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8376068376068376,
692
+ "grad_norm": 0.22845034301280975,
693
+ "learning_rate": 0.00018232834872987147,
694
+ "loss": 1.5063,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8461538461538461,
699
+ "grad_norm": 0.2563302516937256,
700
+ "learning_rate": 0.00018193705611662696,
701
+ "loss": 0.9946,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8547008547008547,
706
+ "grad_norm": 0.30030304193496704,
707
+ "learning_rate": 0.0001815419082986815,
708
+ "loss": 1.0936,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8632478632478633,
713
+ "grad_norm": 0.22599591314792633,
714
+ "learning_rate": 0.00018114292386805936,
715
+ "loss": 1.346,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8717948717948718,
720
+ "grad_norm": 0.20411820709705353,
721
+ "learning_rate": 0.00018074012159730032,
722
+ "loss": 1.5147,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8803418803418803,
727
+ "grad_norm": 0.20635190606117249,
728
+ "learning_rate": 0.00018033352043857675,
729
+ "loss": 1.1425,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8888888888888888,
734
+ "grad_norm": 0.22327086329460144,
735
+ "learning_rate": 0.00017992313952280172,
736
+ "loss": 1.4435,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.8974358974358975,
741
+ "grad_norm": 0.2183496206998825,
742
+ "learning_rate": 0.00017950899815872892,
743
+ "loss": 1.5659,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.905982905982906,
748
+ "grad_norm": 0.31636252999305725,
749
+ "learning_rate": 0.00017909111583204422,
750
+ "loss": 1.4703,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9145299145299145,
755
+ "grad_norm": 0.3305496275424957,
756
+ "learning_rate": 0.0001786695122044487,
757
+ "loss": 1.0904,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9230769230769231,
762
+ "grad_norm": 0.22857435047626495,
763
+ "learning_rate": 0.0001782442071127338,
764
+ "loss": 1.3801,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9316239316239316,
769
+ "grad_norm": 0.31968221068382263,
770
+ "learning_rate": 0.0001778152205678477,
771
+ "loss": 1.4907,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9401709401709402,
776
+ "grad_norm": 0.27950960397720337,
777
+ "learning_rate": 0.00017738257275395404,
778
+ "loss": 1.0864,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9487179487179487,
783
+ "grad_norm": 0.2740281820297241,
784
+ "learning_rate": 0.00017694628402748202,
785
+ "loss": 0.9241,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9572649572649573,
790
+ "grad_norm": 0.26951318979263306,
791
+ "learning_rate": 0.0001765063749161688,
792
+ "loss": 0.9894,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9658119658119658,
797
+ "grad_norm": 0.2811899781227112,
798
+ "learning_rate": 0.00017606286611809353,
799
+ "loss": 0.9659,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9743589743589743,
804
+ "grad_norm": 0.23854824900627136,
805
+ "learning_rate": 0.00017561577850070355,
806
+ "loss": 1.0623,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9829059829059829,
811
+ "grad_norm": 0.21959957480430603,
812
+ "learning_rate": 0.00017516513309983253,
813
+ "loss": 0.8671,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9914529914529915,
818
+ "grad_norm": 0.3096697926521301,
819
+ "learning_rate": 0.00017471095111871074,
820
+ "loss": 1.0756,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 1.0,
825
+ "grad_norm": 0.23363932967185974,
826
+ "learning_rate": 0.0001742532539269674,
827
+ "loss": 0.8988,
828
+ "step": 117
829
+ }
830
+ ],
831
+ "logging_steps": 1,
832
+ "max_steps": 468,
833
+ "num_input_tokens_seen": 0,
834
+ "num_train_epochs": 4,
835
+ "save_steps": 117,
836
+ "stateful_callbacks": {
837
+ "TrainerControl": {
838
+ "args": {
839
+ "should_epoch_stop": false,
840
+ "should_evaluate": false,
841
+ "should_log": false,
842
+ "should_save": true,
843
+ "should_training_stop": false
844
+ },
845
+ "attributes": {}
846
+ }
847
+ },
848
+ "total_flos": 7.59834818421719e+16,
849
+ "train_batch_size": 1,
850
+ "trial_name": null,
851
+ "trial_params": null
852
+ }
checkpoint-117/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7fe3839cfcc5a93b060094e1030e134d680eeeb9bb2bdbde204831612dbb1c1
3
+ size 6840
checkpoint-234/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /cpool/DeepSeek-R1-Distill-Qwen-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-234/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/cpool/DeepSeek-R1-Distill-Qwen-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "up_proj",
27
+ "k_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "q_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-234/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a90abdd25017e6a42e92545f4431155f49ef9491585602234ce83b559965fa5f
3
+ size 2497283840
checkpoint-234/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35db9b65829b915e513f2e0ca419f89eed66fb6c43b6869481fc6eae9b37b7cb
3
+ size 646273514
checkpoint-234/pytorch_model_fsdp.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ce573db7745bffd04b572fe69db1fac46fd36914375d24c346666fbdb2c09bd
3
+ size 323107814
checkpoint-234/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58aff579f5c422c4cfa2f9521a13e0c8c5c09ae324f9b3862a1e6717b01af4bf
3
+ size 14512
checkpoint-234/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1096036849777c5ef501092cfe5a6743135a255015f15917bff932802d5326b
3
+ size 14512
checkpoint-234/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:997057b731bc65f59ea4d3bb39f1828f4d4670db8a01f052c60d232d4e8dfea7
3
+ size 1064
checkpoint-234/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-234/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893
3
+ size 11422778
checkpoint-234/tokenizer_config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin��>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
185
+ "clean_up_tokenization_spaces": false,
186
+ "eos_token": "<|end▁of▁sentence|>",
187
+ "extra_special_tokens": {},
188
+ "legacy": true,
189
+ "model_max_length": 16384,
190
+ "pad_token": "<|end▁of▁sentence|>",
191
+ "sp_model_kwargs": {},
192
+ "tokenizer_class": "LlamaTokenizer",
193
+ "unk_token": null,
194
+ "use_default_system_prompt": false
195
+ }
checkpoint-234/trainer_state.json ADDED
@@ -0,0 +1,1671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 234,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008547008547008548,
13
+ "grad_norm": 0.15355850756168365,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.4892,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017094017094017096,
20
+ "grad_norm": 0.1224861666560173,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.1445,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.02564102564102564,
27
+ "grad_norm": 0.1645984649658203,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.5538,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.03418803418803419,
34
+ "grad_norm": 0.125856414437294,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.7634,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042735042735042736,
41
+ "grad_norm": 0.1726977378129959,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.4105,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.05128205128205128,
48
+ "grad_norm": 0.18316921591758728,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.8364,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05982905982905983,
55
+ "grad_norm": 0.17618055641651154,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.3885,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06837606837606838,
62
+ "grad_norm": 0.17036275565624237,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.3574,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.07692307692307693,
69
+ "grad_norm": 0.18832312524318695,
70
+ "learning_rate": 0.00018,
71
+ "loss": 1.2256,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08547008547008547,
76
+ "grad_norm": 0.22157786786556244,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.515,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09401709401709402,
83
+ "grad_norm": 0.21728643774986267,
84
+ "learning_rate": 0.0001999976474595967,
85
+ "loss": 1.4505,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.10256410256410256,
90
+ "grad_norm": 0.16113220155239105,
91
+ "learning_rate": 0.00019999058994907564,
92
+ "loss": 1.132,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.1111111111111111,
97
+ "grad_norm": 0.1798534393310547,
98
+ "learning_rate": 0.00019997882780049847,
99
+ "loss": 1.2355,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11965811965811966,
104
+ "grad_norm": 0.19335126876831055,
105
+ "learning_rate": 0.0001999623615672837,
106
+ "loss": 1.4485,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.1282051282051282,
111
+ "grad_norm": 0.14973561465740204,
112
+ "learning_rate": 0.00019994119202418098,
113
+ "loss": 1.4852,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13675213675213677,
118
+ "grad_norm": 0.1763419359922409,
119
+ "learning_rate": 0.00019991532016723439,
120
+ "loss": 1.0831,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.1452991452991453,
125
+ "grad_norm": 0.148220494389534,
126
+ "learning_rate": 0.00019988474721373568,
127
+ "loss": 1.5454,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.15384615384615385,
132
+ "grad_norm": 0.1581086665391922,
133
+ "learning_rate": 0.00019984947460216707,
134
+ "loss": 0.9387,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.1623931623931624,
139
+ "grad_norm": 0.1937003880739212,
140
+ "learning_rate": 0.00019980950399213344,
141
+ "loss": 1.1612,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17094017094017094,
146
+ "grad_norm": 0.15193545818328857,
147
+ "learning_rate": 0.00019976483726428422,
148
+ "loss": 0.9678,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1794871794871795,
153
+ "grad_norm": 0.17265811562538147,
154
+ "learning_rate": 0.0001997154765202251,
155
+ "loss": 1.0147,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18803418803418803,
160
+ "grad_norm": 0.16466519236564636,
161
+ "learning_rate": 0.00019966142408241901,
162
+ "loss": 1.1492,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19658119658119658,
167
+ "grad_norm": 0.17746295034885406,
168
+ "learning_rate": 0.00019960268249407675,
169
+ "loss": 1.2277,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.20512820512820512,
174
+ "grad_norm": 0.1838495433330536,
175
+ "learning_rate": 0.00019953925451903756,
176
+ "loss": 1.1559,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21367521367521367,
181
+ "grad_norm": 0.1542479395866394,
182
+ "learning_rate": 0.0001994711431416389,
183
+ "loss": 1.855,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.2222222222222222,
188
+ "grad_norm": 0.1788703054189682,
189
+ "learning_rate": 0.00019939835156657616,
190
+ "loss": 1.6273,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.23076923076923078,
195
+ "grad_norm": 0.15661294758319855,
196
+ "learning_rate": 0.00019932088321875172,
197
+ "loss": 1.0783,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23931623931623933,
202
+ "grad_norm": 0.1869712620973587,
203
+ "learning_rate": 0.00019923874174311394,
204
+ "loss": 0.9181,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24786324786324787,
209
+ "grad_norm": 0.14521349966526031,
210
+ "learning_rate": 0.0001991519310044857,
211
+ "loss": 1.4428,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.2564102564102564,
216
+ "grad_norm": 0.17194955050945282,
217
+ "learning_rate": 0.00019906045508738228,
218
+ "loss": 1.3213,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26495726495726496,
223
+ "grad_norm": 0.14739835262298584,
224
+ "learning_rate": 0.0001989643182958196,
225
+ "loss": 0.9933,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.27350427350427353,
230
+ "grad_norm": 0.17825335264205933,
231
+ "learning_rate": 0.00019886352515311134,
232
+ "loss": 1.034,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.28205128205128205,
237
+ "grad_norm": 0.16200387477874756,
238
+ "learning_rate": 0.0001987580804016563,
239
+ "loss": 1.3064,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.2905982905982906,
244
+ "grad_norm": 0.170911967754364,
245
+ "learning_rate": 0.00019864798900271532,
246
+ "loss": 1.2321,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.29914529914529914,
251
+ "grad_norm": 0.16599859297275543,
252
+ "learning_rate": 0.0001985332561361776,
253
+ "loss": 0.9447,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3076923076923077,
258
+ "grad_norm": 0.14686603844165802,
259
+ "learning_rate": 0.00019841388720031727,
260
+ "loss": 0.8823,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3162393162393162,
265
+ "grad_norm": 0.1870049089193344,
266
+ "learning_rate": 0.00019828988781153917,
267
+ "loss": 1.1041,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.3247863247863248,
272
+ "grad_norm": 0.1619299054145813,
273
+ "learning_rate": 0.00019816126380411476,
274
+ "loss": 0.9918,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3333333333333333,
279
+ "grad_norm": 0.18731147050857544,
280
+ "learning_rate": 0.00019802802122990758,
281
+ "loss": 1.0642,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3418803418803419,
286
+ "grad_norm": 0.17905616760253906,
287
+ "learning_rate": 0.00019789016635808837,
288
+ "loss": 1.0877,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.3504273504273504,
293
+ "grad_norm": 0.15318270027637482,
294
+ "learning_rate": 0.00019774770567484022,
295
+ "loss": 1.2165,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.358974358974359,
300
+ "grad_norm": 0.14854711294174194,
301
+ "learning_rate": 0.00019760064588305345,
302
+ "loss": 0.9812,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36752136752136755,
307
+ "grad_norm": 0.15519340336322784,
308
+ "learning_rate": 0.00019744899390201006,
309
+ "loss": 0.9977,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37606837606837606,
314
+ "grad_norm": 0.1589617133140564,
315
+ "learning_rate": 0.0001972927568670583,
316
+ "loss": 1.4097,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.38461538461538464,
321
+ "grad_norm": 0.17286093533039093,
322
+ "learning_rate": 0.00019713194212927696,
323
+ "loss": 1.1385,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39316239316239315,
328
+ "grad_norm": 0.19325074553489685,
329
+ "learning_rate": 0.00019696655725512933,
330
+ "loss": 0.9997,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4017094017094017,
335
+ "grad_norm": 0.18447531759738922,
336
+ "learning_rate": 0.00019679661002610743,
337
+ "loss": 1.0873,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.41025641025641024,
342
+ "grad_norm": 0.16223366558551788,
343
+ "learning_rate": 0.00019662210843836574,
344
+ "loss": 0.99,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.4188034188034188,
349
+ "grad_norm": 0.1919640749692917,
350
+ "learning_rate": 0.0001964430607023449,
351
+ "loss": 1.0171,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.42735042735042733,
356
+ "grad_norm": 0.22606882452964783,
357
+ "learning_rate": 0.00019625947524238563,
358
+ "loss": 1.4172,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4358974358974359,
363
+ "grad_norm": 0.17758312821388245,
364
+ "learning_rate": 0.00019607136069633212,
365
+ "loss": 0.9964,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4444444444444444,
370
+ "grad_norm": 0.16785483062267303,
371
+ "learning_rate": 0.0001958787259151258,
372
+ "loss": 0.9883,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.452991452991453,
377
+ "grad_norm": 0.19499914348125458,
378
+ "learning_rate": 0.00019568157996238884,
379
+ "loss": 1.0293,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.46153846153846156,
384
+ "grad_norm": 0.15674076974391937,
385
+ "learning_rate": 0.0001954799321139975,
386
+ "loss": 1.3643,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4700854700854701,
391
+ "grad_norm": 0.16759538650512695,
392
+ "learning_rate": 0.00019527379185764612,
393
+ "loss": 0.8998,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47863247863247865,
398
+ "grad_norm": 0.20853222906589508,
399
+ "learning_rate": 0.00019506316889240027,
400
+ "loss": 1.4597,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.48717948717948717,
405
+ "grad_norm": 0.18584011495113373,
406
+ "learning_rate": 0.00019484807312824067,
407
+ "loss": 0.8848,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49572649572649574,
412
+ "grad_norm": 0.24146708846092224,
413
+ "learning_rate": 0.0001946285146855968,
414
+ "loss": 1.0529,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5042735042735043,
419
+ "grad_norm": 0.20457321405410767,
420
+ "learning_rate": 0.0001944045038948709,
421
+ "loss": 0.9917,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.5128205128205128,
426
+ "grad_norm": 0.21354275941848755,
427
+ "learning_rate": 0.00019417605129595157,
428
+ "loss": 0.9096,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5213675213675214,
433
+ "grad_norm": 0.2198089212179184,
434
+ "learning_rate": 0.0001939431676377183,
435
+ "loss": 0.9228,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5299145299145299,
440
+ "grad_norm": 0.18545866012573242,
441
+ "learning_rate": 0.0001937058638775353,
442
+ "loss": 0.8399,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5384615384615384,
447
+ "grad_norm": 0.1578792780637741,
448
+ "learning_rate": 0.00019346415118073632,
449
+ "loss": 1.6315,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5470085470085471,
454
+ "grad_norm": 0.23443493247032166,
455
+ "learning_rate": 0.00019321804092009906,
456
+ "loss": 1.0905,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5555555555555556,
461
+ "grad_norm": 0.20623010396957397,
462
+ "learning_rate": 0.00019296754467531014,
463
+ "loss": 0.9367,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5641025641025641,
468
+ "grad_norm": 0.24046015739440918,
469
+ "learning_rate": 0.00019271267423242024,
470
+ "loss": 0.9195,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5726495726495726,
475
+ "grad_norm": 0.22675752639770508,
476
+ "learning_rate": 0.00019245344158328972,
477
+ "loss": 1.1275,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5811965811965812,
482
+ "grad_norm": 0.22297680377960205,
483
+ "learning_rate": 0.0001921898589250242,
484
+ "loss": 0.9244,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5897435897435898,
489
+ "grad_norm": 0.21324071288108826,
490
+ "learning_rate": 0.0001919219386594007,
491
+ "loss": 0.9706,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5982905982905983,
496
+ "grad_norm": 0.21497191488742828,
497
+ "learning_rate": 0.00019164969339228422,
498
+ "loss": 1.0559,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6068376068376068,
503
+ "grad_norm": 0.2526251971721649,
504
+ "learning_rate": 0.00019137313593303463,
505
+ "loss": 1.0632,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6153846153846154,
510
+ "grad_norm": 0.19590331614017487,
511
+ "learning_rate": 0.00019109227929390378,
512
+ "loss": 1.8134,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6239316239316239,
517
+ "grad_norm": 0.21532683074474335,
518
+ "learning_rate": 0.00019080713668942356,
519
+ "loss": 0.9466,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6324786324786325,
524
+ "grad_norm": 0.2264883816242218,
525
+ "learning_rate": 0.00019051772153578389,
526
+ "loss": 0.8941,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.6410256410256411,
531
+ "grad_norm": 0.22985824942588806,
532
+ "learning_rate": 0.00019022404745020163,
533
+ "loss": 0.8991,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6495726495726496,
538
+ "grad_norm": 0.19453634321689606,
539
+ "learning_rate": 0.00018992612825027976,
540
+ "loss": 0.9837,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6581196581196581,
545
+ "grad_norm": 0.2547195851802826,
546
+ "learning_rate": 0.0001896239779533575,
547
+ "loss": 1.1035,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6666666666666666,
552
+ "grad_norm": 0.20812910795211792,
553
+ "learning_rate": 0.00018931761077585035,
554
+ "loss": 0.8916,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6752136752136753,
559
+ "grad_norm": 0.2176084816455841,
560
+ "learning_rate": 0.00018900704113258165,
561
+ "loss": 0.8826,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6837606837606838,
566
+ "grad_norm": 0.2221064418554306,
567
+ "learning_rate": 0.00018869228363610404,
568
+ "loss": 0.9069,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6923076923076923,
573
+ "grad_norm": 0.2675364911556244,
574
+ "learning_rate": 0.00018837335309601213,
575
+ "loss": 1.035,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.7008547008547008,
580
+ "grad_norm": 0.1994653195142746,
581
+ "learning_rate": 0.00018805026451824546,
582
+ "loss": 1.5854,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7094017094017094,
587
+ "grad_norm": 0.20346811413764954,
588
+ "learning_rate": 0.00018772303310438275,
589
+ "loss": 1.4788,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.717948717948718,
594
+ "grad_norm": 0.22119802236557007,
595
+ "learning_rate": 0.00018739167425092644,
596
+ "loss": 1.4946,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7264957264957265,
601
+ "grad_norm": 0.2174052894115448,
602
+ "learning_rate": 0.00018705620354857833,
603
+ "loss": 0.8667,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7350427350427351,
608
+ "grad_norm": 0.2322807013988495,
609
+ "learning_rate": 0.00018671663678150607,
610
+ "loss": 0.861,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7435897435897436,
615
+ "grad_norm": 0.22151263058185577,
616
+ "learning_rate": 0.0001863729899266004,
617
+ "loss": 0.8966,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7521367521367521,
622
+ "grad_norm": 0.243766650557518,
623
+ "learning_rate": 0.0001860252791527236,
624
+ "loss": 1.2998,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7606837606837606,
629
+ "grad_norm": 0.19212521612644196,
630
+ "learning_rate": 0.00018567352081994852,
631
+ "loss": 1.5215,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.7692307692307693,
636
+ "grad_norm": 0.20964723825454712,
637
+ "learning_rate": 0.00018531773147878895,
638
+ "loss": 1.4717,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7777777777777778,
643
+ "grad_norm": 0.24561531841754913,
644
+ "learning_rate": 0.0001849579278694209,
645
+ "loss": 0.9569,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7863247863247863,
650
+ "grad_norm": 0.23924781382083893,
651
+ "learning_rate": 0.00018459412692089494,
652
+ "loss": 0.9441,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7948717948717948,
657
+ "grad_norm": 0.2302614450454712,
658
+ "learning_rate": 0.0001842263457503397,
659
+ "loss": 0.8417,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8034188034188035,
664
+ "grad_norm": 0.24661926925182343,
665
+ "learning_rate": 0.00018385460166215638,
666
+ "loss": 1.1297,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.811965811965812,
671
+ "grad_norm": 0.24925513565540314,
672
+ "learning_rate": 0.00018347891214720477,
673
+ "loss": 0.8999,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8205128205128205,
678
+ "grad_norm": 0.19934344291687012,
679
+ "learning_rate": 0.00018309929488198012,
680
+ "loss": 1.4818,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8290598290598291,
685
+ "grad_norm": 0.24845215678215027,
686
+ "learning_rate": 0.00018271576772778154,
687
+ "loss": 0.9454,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8376068376068376,
692
+ "grad_norm": 0.22845034301280975,
693
+ "learning_rate": 0.00018232834872987147,
694
+ "loss": 1.5063,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8461538461538461,
699
+ "grad_norm": 0.2563302516937256,
700
+ "learning_rate": 0.00018193705611662696,
701
+ "loss": 0.9946,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8547008547008547,
706
+ "grad_norm": 0.30030304193496704,
707
+ "learning_rate": 0.0001815419082986815,
708
+ "loss": 1.0936,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8632478632478633,
713
+ "grad_norm": 0.22599591314792633,
714
+ "learning_rate": 0.00018114292386805936,
715
+ "loss": 1.346,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8717948717948718,
720
+ "grad_norm": 0.20411820709705353,
721
+ "learning_rate": 0.00018074012159730032,
722
+ "loss": 1.5147,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8803418803418803,
727
+ "grad_norm": 0.20635190606117249,
728
+ "learning_rate": 0.00018033352043857675,
729
+ "loss": 1.1425,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8888888888888888,
734
+ "grad_norm": 0.22327086329460144,
735
+ "learning_rate": 0.00017992313952280172,
736
+ "loss": 1.4435,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.8974358974358975,
741
+ "grad_norm": 0.2183496206998825,
742
+ "learning_rate": 0.00017950899815872892,
743
+ "loss": 1.5659,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.905982905982906,
748
+ "grad_norm": 0.31636252999305725,
749
+ "learning_rate": 0.00017909111583204422,
750
+ "loss": 1.4703,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9145299145299145,
755
+ "grad_norm": 0.3305496275424957,
756
+ "learning_rate": 0.0001786695122044487,
757
+ "loss": 1.0904,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9230769230769231,
762
+ "grad_norm": 0.22857435047626495,
763
+ "learning_rate": 0.0001782442071127338,
764
+ "loss": 1.3801,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9316239316239316,
769
+ "grad_norm": 0.31968221068382263,
770
+ "learning_rate": 0.0001778152205678477,
771
+ "loss": 1.4907,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9401709401709402,
776
+ "grad_norm": 0.27950960397720337,
777
+ "learning_rate": 0.00017738257275395404,
778
+ "loss": 1.0864,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9487179487179487,
783
+ "grad_norm": 0.2740281820297241,
784
+ "learning_rate": 0.00017694628402748202,
785
+ "loss": 0.9241,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9572649572649573,
790
+ "grad_norm": 0.26951318979263306,
791
+ "learning_rate": 0.0001765063749161688,
792
+ "loss": 0.9894,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9658119658119658,
797
+ "grad_norm": 0.2811899781227112,
798
+ "learning_rate": 0.00017606286611809353,
799
+ "loss": 0.9659,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9743589743589743,
804
+ "grad_norm": 0.23854824900627136,
805
+ "learning_rate": 0.00017561577850070355,
806
+ "loss": 1.0623,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9829059829059829,
811
+ "grad_norm": 0.21959957480430603,
812
+ "learning_rate": 0.00017516513309983253,
813
+ "loss": 0.8671,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9914529914529915,
818
+ "grad_norm": 0.3096697926521301,
819
+ "learning_rate": 0.00017471095111871074,
820
+ "loss": 1.0756,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 1.0,
825
+ "grad_norm": 0.23363932967185974,
826
+ "learning_rate": 0.0001742532539269674,
827
+ "loss": 0.8988,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0085470085470085,
832
+ "grad_norm": 0.23965218663215637,
833
+ "learning_rate": 0.00017379206305962526,
834
+ "loss": 0.7737,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.017094017094017,
839
+ "grad_norm": 0.24553611874580383,
840
+ "learning_rate": 0.00017332740021608722,
841
+ "loss": 0.7793,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.0256410256410255,
846
+ "grad_norm": 0.267673522233963,
847
+ "learning_rate": 0.00017285928725911562,
848
+ "loss": 0.8077,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0341880341880343,
853
+ "grad_norm": 0.3069080114364624,
854
+ "learning_rate": 0.00017238774621380337,
855
+ "loss": 0.8226,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0427350427350428,
860
+ "grad_norm": 0.26568329334259033,
861
+ "learning_rate": 0.00017191279926653761,
862
+ "loss": 1.5833,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0512820512820513,
867
+ "grad_norm": 0.2673753499984741,
868
+ "learning_rate": 0.00017143446876395602,
869
+ "loss": 1.3896,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0598290598290598,
874
+ "grad_norm": 0.23525093495845795,
875
+ "learning_rate": 0.00017095277721189528,
876
+ "loss": 1.3125,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0683760683760684,
881
+ "grad_norm": 0.3066873550415039,
882
+ "learning_rate": 0.00017046774727433222,
883
+ "loss": 0.8894,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0769230769230769,
888
+ "grad_norm": 0.27280548214912415,
889
+ "learning_rate": 0.00016997940177231722,
890
+ "loss": 0.7649,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0854700854700854,
895
+ "grad_norm": 0.23357781767845154,
896
+ "learning_rate": 0.00016948776368290084,
897
+ "loss": 1.4143,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0940170940170941,
902
+ "grad_norm": 0.2928774356842041,
903
+ "learning_rate": 0.00016899285613805246,
904
+ "loss": 0.6522,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1025641025641026,
909
+ "grad_norm": 0.33789336681365967,
910
+ "learning_rate": 0.00016849470242357196,
911
+ "loss": 0.7737,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1111111111111112,
916
+ "grad_norm": 0.3078365921974182,
917
+ "learning_rate": 0.00016799332597799413,
918
+ "loss": 0.8068,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1196581196581197,
923
+ "grad_norm": 0.3175398111343384,
924
+ "learning_rate": 0.00016748875039148593,
925
+ "loss": 1.223,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1282051282051282,
930
+ "grad_norm": 0.27531448006629944,
931
+ "learning_rate": 0.0001669809994047364,
932
+ "loss": 1.3081,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1367521367521367,
937
+ "grad_norm": 0.34105026721954346,
938
+ "learning_rate": 0.0001664700969078398,
939
+ "loss": 0.9031,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1452991452991452,
944
+ "grad_norm": 0.25465068221092224,
945
+ "learning_rate": 0.00016595606693917142,
946
+ "loss": 1.3237,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.1538461538461537,
951
+ "grad_norm": 0.2841501533985138,
952
+ "learning_rate": 0.00016543893368425666,
953
+ "loss": 0.7393,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1623931623931625,
958
+ "grad_norm": 0.3230992257595062,
959
+ "learning_rate": 0.00016491872147463306,
960
+ "loss": 0.7437,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.170940170940171,
965
+ "grad_norm": 0.25824740529060364,
966
+ "learning_rate": 0.00016439545478670543,
967
+ "loss": 1.883,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1794871794871795,
972
+ "grad_norm": 0.31415536999702454,
973
+ "learning_rate": 0.00016386915824059427,
974
+ "loss": 0.703,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.188034188034188,
979
+ "grad_norm": 0.26885557174682617,
980
+ "learning_rate": 0.00016333985659897735,
981
+ "loss": 0.6592,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1965811965811965,
986
+ "grad_norm": 0.4018881618976593,
987
+ "learning_rate": 0.00016280757476592466,
988
+ "loss": 0.7733,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.205128205128205,
993
+ "grad_norm": 0.3181138038635254,
994
+ "learning_rate": 0.0001622723377857265,
995
+ "loss": 0.7577,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2136752136752136,
1000
+ "grad_norm": 0.2720906436443329,
1001
+ "learning_rate": 0.00016173417084171536,
1002
+ "loss": 1.3883,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2222222222222223,
1007
+ "grad_norm": 0.34472835063934326,
1008
+ "learning_rate": 0.00016119309925508078,
1009
+ "loss": 0.7757,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2307692307692308,
1014
+ "grad_norm": 0.40166720747947693,
1015
+ "learning_rate": 0.0001606491484836782,
1016
+ "loss": 0.79,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2393162393162394,
1021
+ "grad_norm": 0.38203030824661255,
1022
+ "learning_rate": 0.00016010234412083086,
1023
+ "loss": 0.8184,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2478632478632479,
1028
+ "grad_norm": 0.3825059235095978,
1029
+ "learning_rate": 0.00015955271189412598,
1030
+ "loss": 0.9065,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2564102564102564,
1035
+ "grad_norm": 0.403533935546875,
1036
+ "learning_rate": 0.00015900027766420393,
1037
+ "loss": 0.7605,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.264957264957265,
1042
+ "grad_norm": 0.3657178282737732,
1043
+ "learning_rate": 0.00015844506742354164,
1044
+ "loss": 0.8265,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2735042735042734,
1049
+ "grad_norm": 0.2825511693954468,
1050
+ "learning_rate": 0.00015788710729522953,
1051
+ "loss": 1.166,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.282051282051282,
1056
+ "grad_norm": 0.4000828266143799,
1057
+ "learning_rate": 0.00015732642353174259,
1058
+ "loss": 1.2792,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2905982905982907,
1063
+ "grad_norm": 0.3135271668434143,
1064
+ "learning_rate": 0.0001567630425137049,
1065
+ "loss": 0.6227,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2991452991452992,
1070
+ "grad_norm": 0.3828388452529907,
1071
+ "learning_rate": 0.00015619699074864864,
1072
+ "loss": 0.6989,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3076923076923077,
1077
+ "grad_norm": 0.45689550042152405,
1078
+ "learning_rate": 0.00015562829486976673,
1079
+ "loss": 0.9088,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3162393162393162,
1084
+ "grad_norm": 0.36523374915122986,
1085
+ "learning_rate": 0.00015505698163465986,
1086
+ "loss": 0.9859,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3247863247863247,
1091
+ "grad_norm": 0.4206138551235199,
1092
+ "learning_rate": 0.00015448307792407734,
1093
+ "loss": 0.7771,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3333333333333333,
1098
+ "grad_norm": 0.3400786817073822,
1099
+ "learning_rate": 0.00015390661074065256,
1100
+ "loss": 0.772,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.341880341880342,
1105
+ "grad_norm": 0.334692120552063,
1106
+ "learning_rate": 0.00015332760720763232,
1107
+ "loss": 1.3839,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3504273504273505,
1112
+ "grad_norm": 0.4513654112815857,
1113
+ "learning_rate": 0.00015274609456760073,
1114
+ "loss": 0.8578,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.358974358974359,
1119
+ "grad_norm": 0.4215463399887085,
1120
+ "learning_rate": 0.00015216210018119733,
1121
+ "loss": 0.9154,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3675213675213675,
1126
+ "grad_norm": 0.38081440329551697,
1127
+ "learning_rate": 0.00015157565152583002,
1128
+ "loss": 0.6723,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.376068376068376,
1133
+ "grad_norm": 0.38604873418807983,
1134
+ "learning_rate": 0.0001509867761943818,
1135
+ "loss": 0.9546,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3846153846153846,
1140
+ "grad_norm": 0.39846640825271606,
1141
+ "learning_rate": 0.00015039550189391298,
1142
+ "loss": 0.7379,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.393162393162393,
1147
+ "grad_norm": 0.3619799315929413,
1148
+ "learning_rate": 0.0001498018564443571,
1149
+ "loss": 1.12,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.4017094017094016,
1154
+ "grad_norm": 0.4657539427280426,
1155
+ "learning_rate": 0.0001492058677772123,
1156
+ "loss": 1.0395,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.4102564102564101,
1161
+ "grad_norm": 0.3850860893726349,
1162
+ "learning_rate": 0.000148607563934227,
1163
+ "loss": 0.7949,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4188034188034189,
1168
+ "grad_norm": 0.30473998188972473,
1169
+ "learning_rate": 0.00014800697306608044,
1170
+ "loss": 0.6285,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4273504273504274,
1175
+ "grad_norm": 0.36891016364097595,
1176
+ "learning_rate": 0.00014740412343105828,
1177
+ "loss": 0.9947,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.435897435897436,
1182
+ "grad_norm": 0.3746401071548462,
1183
+ "learning_rate": 0.00014679904339372302,
1184
+ "loss": 0.7204,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4444444444444444,
1189
+ "grad_norm": 0.4085482060909271,
1190
+ "learning_rate": 0.00014619176142357935,
1191
+ "loss": 0.7145,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.452991452991453,
1196
+ "grad_norm": 0.40742969512939453,
1197
+ "learning_rate": 0.0001455823060937347,
1198
+ "loss": 0.8273,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4615384615384617,
1203
+ "grad_norm": 0.3882700502872467,
1204
+ "learning_rate": 0.00014497070607955476,
1205
+ "loss": 0.7025,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4700854700854702,
1210
+ "grad_norm": 0.43999457359313965,
1211
+ "learning_rate": 0.00014435699015731448,
1212
+ "loss": 0.7473,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4786324786324787,
1217
+ "grad_norm": 0.3841669261455536,
1218
+ "learning_rate": 0.00014374118720284388,
1219
+ "loss": 0.8794,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4871794871794872,
1224
+ "grad_norm": 0.3169039189815521,
1225
+ "learning_rate": 0.00014312332619016965,
1226
+ "loss": 1.007,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4957264957264957,
1231
+ "grad_norm": 0.44292953610420227,
1232
+ "learning_rate": 0.0001425034361901516,
1233
+ "loss": 0.846,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5042735042735043,
1238
+ "grad_norm": 0.3945798873901367,
1239
+ "learning_rate": 0.00014188154636911524,
1240
+ "loss": 1.3956,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5128205128205128,
1245
+ "grad_norm": 0.4760408103466034,
1246
+ "learning_rate": 0.0001412576859874791,
1247
+ "loss": 0.7811,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5213675213675213,
1252
+ "grad_norm": 0.401869535446167,
1253
+ "learning_rate": 0.00014063188439837832,
1254
+ "loss": 0.6903,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5299145299145298,
1259
+ "grad_norm": 0.3994334042072296,
1260
+ "learning_rate": 0.0001400041710462833,
1261
+ "loss": 0.688,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.5384615384615383,
1266
+ "grad_norm": 0.41962575912475586,
1267
+ "learning_rate": 0.0001393745754656146,
1268
+ "loss": 0.7697,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.547008547008547,
1273
+ "grad_norm": 0.36107930541038513,
1274
+ "learning_rate": 0.00013874312727935292,
1275
+ "loss": 0.715,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5555555555555556,
1280
+ "grad_norm": 0.3828651010990143,
1281
+ "learning_rate": 0.00013810985619764572,
1282
+ "loss": 1.3298,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.564102564102564,
1287
+ "grad_norm": 0.3839617967605591,
1288
+ "learning_rate": 0.00013747479201640914,
1289
+ "loss": 0.6851,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5726495726495726,
1294
+ "grad_norm": 0.4327555298805237,
1295
+ "learning_rate": 0.00013683796461592604,
1296
+ "loss": 0.7906,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5811965811965814,
1301
+ "grad_norm": 0.3910170793533325,
1302
+ "learning_rate": 0.00013619940395944027,
1303
+ "loss": 0.7832,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5897435897435899,
1308
+ "grad_norm": 0.4029540419578552,
1309
+ "learning_rate": 0.00013555914009174663,
1310
+ "loss": 0.7723,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5982905982905984,
1315
+ "grad_norm": 0.3986589014530182,
1316
+ "learning_rate": 0.00013491720313777756,
1317
+ "loss": 1.1658,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.606837606837607,
1322
+ "grad_norm": 0.3962538242340088,
1323
+ "learning_rate": 0.00013427362330118543,
1324
+ "loss": 0.7481,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6153846153846154,
1329
+ "grad_norm": 0.4297255277633667,
1330
+ "learning_rate": 0.0001336284308629216,
1331
+ "loss": 0.9531,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.623931623931624,
1336
+ "grad_norm": 0.3742808699607849,
1337
+ "learning_rate": 0.00013298165617981172,
1338
+ "loss": 0.9516,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6324786324786325,
1343
+ "grad_norm": 0.44721004366874695,
1344
+ "learning_rate": 0.00013233332968312715,
1345
+ "loss": 1.075,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.641025641025641,
1350
+ "grad_norm": 0.41275331377983093,
1351
+ "learning_rate": 0.0001316834818771535,
1352
+ "loss": 0.8295,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6495726495726495,
1357
+ "grad_norm": 0.46620428562164307,
1358
+ "learning_rate": 0.00013103214333775521,
1359
+ "loss": 0.8314,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.658119658119658,
1364
+ "grad_norm": 0.4467974901199341,
1365
+ "learning_rate": 0.00013037934471093682,
1366
+ "loss": 0.7321,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6666666666666665,
1371
+ "grad_norm": 0.42806383967399597,
1372
+ "learning_rate": 0.00012972511671140125,
1373
+ "loss": 0.7144,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6752136752136753,
1378
+ "grad_norm": 0.3721958100795746,
1379
+ "learning_rate": 0.00012906949012110456,
1380
+ "loss": 1.0117,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6837606837606838,
1385
+ "grad_norm": 0.46833130717277527,
1386
+ "learning_rate": 0.00012841249578780757,
1387
+ "loss": 0.9599,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6923076923076923,
1392
+ "grad_norm": 0.3547254502773285,
1393
+ "learning_rate": 0.00012775416462362457,
1394
+ "loss": 0.8255,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.7008547008547008,
1399
+ "grad_norm": 0.36470168828964233,
1400
+ "learning_rate": 0.00012709452760356884,
1401
+ "loss": 1.3796,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7094017094017095,
1406
+ "grad_norm": 0.4088481068611145,
1407
+ "learning_rate": 0.00012643361576409516,
1408
+ "loss": 0.818,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.717948717948718,
1413
+ "grad_norm": 0.43268319964408875,
1414
+ "learning_rate": 0.00012577146020163968,
1415
+ "loss": 0.8157,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7264957264957266,
1420
+ "grad_norm": 0.4660526216030121,
1421
+ "learning_rate": 0.00012510809207115666,
1422
+ "loss": 0.775,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.735042735042735,
1427
+ "grad_norm": 0.41217854619026184,
1428
+ "learning_rate": 0.00012444354258465268,
1429
+ "loss": 0.7172,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7435897435897436,
1434
+ "grad_norm": 0.4177812933921814,
1435
+ "learning_rate": 0.00012377784300971807,
1436
+ "loss": 1.1308,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7521367521367521,
1441
+ "grad_norm": 0.3943150043487549,
1442
+ "learning_rate": 0.0001231110246680558,
1443
+ "loss": 1.4001,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7606837606837606,
1448
+ "grad_norm": 0.48257848620414734,
1449
+ "learning_rate": 0.00012244311893400763,
1450
+ "loss": 0.9118,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7692307692307692,
1455
+ "grad_norm": 0.4754193127155304,
1456
+ "learning_rate": 0.00012177415723307808,
1457
+ "loss": 0.825,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7777777777777777,
1462
+ "grad_norm": 0.3812815546989441,
1463
+ "learning_rate": 0.00012110417104045575,
1464
+ "loss": 0.6433,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7863247863247862,
1469
+ "grad_norm": 0.3967946469783783,
1470
+ "learning_rate": 0.00012043319187953241,
1471
+ "loss": 0.8549,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.7948717948717947,
1476
+ "grad_norm": 0.4312019348144531,
1477
+ "learning_rate": 0.00011976125132041974,
1478
+ "loss": 0.8387,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8034188034188035,
1483
+ "grad_norm": 0.4585026204586029,
1484
+ "learning_rate": 0.00011908838097846404,
1485
+ "loss": 0.9471,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.811965811965812,
1490
+ "grad_norm": 0.4149639904499054,
1491
+ "learning_rate": 0.00011841461251275867,
1492
+ "loss": 1.0415,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8205128205128205,
1497
+ "grad_norm": 0.48069992661476135,
1498
+ "learning_rate": 0.00011773997762465429,
1499
+ "loss": 0.7534,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8290598290598292,
1504
+ "grad_norm": 0.3820441961288452,
1505
+ "learning_rate": 0.0001170645080562676,
1506
+ "loss": 0.8292,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8376068376068377,
1511
+ "grad_norm": 0.3951680660247803,
1512
+ "learning_rate": 0.00011638823558898762,
1513
+ "loss": 0.6923,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8461538461538463,
1518
+ "grad_norm": 0.40777531266212463,
1519
+ "learning_rate": 0.00011571119204198037,
1520
+ "loss": 0.7335,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8547008547008548,
1525
+ "grad_norm": 0.3792341649532318,
1526
+ "learning_rate": 0.00011503340927069189,
1527
+ "loss": 0.8608,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8632478632478633,
1532
+ "grad_norm": 0.36157581210136414,
1533
+ "learning_rate": 0.00011435491916534919,
1534
+ "loss": 0.7314,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8717948717948718,
1539
+ "grad_norm": 0.41833943128585815,
1540
+ "learning_rate": 0.00011367575364946006,
1541
+ "loss": 0.7662,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8803418803418803,
1546
+ "grad_norm": 0.45951926708221436,
1547
+ "learning_rate": 0.00011299594467831078,
1548
+ "loss": 0.6988,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8888888888888888,
1553
+ "grad_norm": 0.4588642120361328,
1554
+ "learning_rate": 0.00011231552423746283,
1555
+ "loss": 0.8544,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8974358974358974,
1560
+ "grad_norm": 0.3614063560962677,
1561
+ "learning_rate": 0.00011163452434124773,
1562
+ "loss": 0.728,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9059829059829059,
1567
+ "grad_norm": 0.4452153742313385,
1568
+ "learning_rate": 0.00011095297703126093,
1569
+ "loss": 0.7399,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9145299145299144,
1574
+ "grad_norm": 0.42948612570762634,
1575
+ "learning_rate": 0.00011027091437485404,
1576
+ "loss": 0.9105,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.9230769230769231,
1581
+ "grad_norm": 0.37950897216796875,
1582
+ "learning_rate": 0.00010958836846362621,
1583
+ "loss": 0.9612,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9316239316239316,
1588
+ "grad_norm": 0.4386560916900635,
1589
+ "learning_rate": 0.00010890537141191417,
1590
+ "loss": 0.683,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9401709401709402,
1595
+ "grad_norm": 0.4166669547557831,
1596
+ "learning_rate": 0.00010822195535528106,
1597
+ "loss": 1.1851,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9487179487179487,
1602
+ "grad_norm": 0.4029337465763092,
1603
+ "learning_rate": 0.00010753815244900458,
1604
+ "loss": 0.6721,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9572649572649574,
1609
+ "grad_norm": 0.47789204120635986,
1610
+ "learning_rate": 0.00010685399486656406,
1611
+ "loss": 0.8654,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.965811965811966,
1616
+ "grad_norm": 0.4141186475753784,
1617
+ "learning_rate": 0.00010616951479812658,
1618
+ "loss": 0.7619,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9743589743589745,
1623
+ "grad_norm": 0.4745655655860901,
1624
+ "learning_rate": 0.00010548474444903247,
1625
+ "loss": 0.698,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.982905982905983,
1630
+ "grad_norm": 0.4075687825679779,
1631
+ "learning_rate": 0.00010479971603828,
1632
+ "loss": 0.7387,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9914529914529915,
1637
+ "grad_norm": 0.37726572155952454,
1638
+ "learning_rate": 0.00010411446179700943,
1639
+ "loss": 0.714,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 2.0,
1644
+ "grad_norm": 0.5989537239074707,
1645
+ "learning_rate": 0.00010342901396698659,
1646
+ "loss": 0.7816,
1647
+ "step": 234
1648
+ }
1649
+ ],
1650
+ "logging_steps": 1,
1651
+ "max_steps": 468,
1652
+ "num_input_tokens_seen": 0,
1653
+ "num_train_epochs": 4,
1654
+ "save_steps": 117,
1655
+ "stateful_callbacks": {
1656
+ "TrainerControl": {
1657
+ "args": {
1658
+ "should_epoch_stop": false,
1659
+ "should_evaluate": false,
1660
+ "should_log": false,
1661
+ "should_save": true,
1662
+ "should_training_stop": false
1663
+ },
1664
+ "attributes": {}
1665
+ }
1666
+ },
1667
+ "total_flos": 1.519669636843438e+17,
1668
+ "train_batch_size": 1,
1669
+ "trial_name": null,
1670
+ "trial_params": null
1671
+ }
checkpoint-234/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7fe3839cfcc5a93b060094e1030e134d680eeeb9bb2bdbde204831612dbb1c1
3
+ size 6840
checkpoint-351/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /cpool/DeepSeek-R1-Distill-Qwen-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-351/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/cpool/DeepSeek-R1-Distill-Qwen-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "up_proj",
27
+ "k_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "q_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-351/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1afd48c3ee699f8ae2782888c901f6069735b17549bb7c95b7a64a5a51b2e8f
3
+ size 2497283840
checkpoint-351/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2974a024832406f2aa24a8eb6a05e6432c8fb724e40e91dfa06bc435d8f33787
3
+ size 646273514
checkpoint-351/pytorch_model_fsdp.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c86cbb8c3ee8ae812c4dfd68ca37b029fb18a06d361fa356076849d28faeadf
3
+ size 323107814
checkpoint-351/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cb646fb0a7810041dc2ede17cfeee4863f8c3d042cb0e9b5af7526d6fd7a7b1
3
+ size 14512
checkpoint-351/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6ac6e96f74bd461ab986ebacd1e0b91ce7ac52c36d246c1857bc8dfa7551867
3
+ size 14512
checkpoint-351/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:454dfa8bbb56ee568c79ad1c952ebecb5c624e8574cf9b37d1ca345031d56714
3
+ size 1064
checkpoint-351/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-351/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893
3
+ size 11422778
checkpoint-351/tokenizer_config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin��>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
185
+ "clean_up_tokenization_spaces": false,
186
+ "eos_token": "<|end▁of▁sentence|>",
187
+ "extra_special_tokens": {},
188
+ "legacy": true,
189
+ "model_max_length": 16384,
190
+ "pad_token": "<|end▁of▁sentence|>",
191
+ "sp_model_kwargs": {},
192
+ "tokenizer_class": "LlamaTokenizer",
193
+ "unk_token": null,
194
+ "use_default_system_prompt": false
195
+ }
checkpoint-351/trainer_state.json ADDED
@@ -0,0 +1,2490 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 351,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008547008547008548,
13
+ "grad_norm": 0.15355850756168365,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.4892,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.017094017094017096,
20
+ "grad_norm": 0.1224861666560173,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.1445,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.02564102564102564,
27
+ "grad_norm": 0.1645984649658203,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.5538,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.03418803418803419,
34
+ "grad_norm": 0.125856414437294,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.7634,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.042735042735042736,
41
+ "grad_norm": 0.1726977378129959,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.4105,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.05128205128205128,
48
+ "grad_norm": 0.18316921591758728,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.8364,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.05982905982905983,
55
+ "grad_norm": 0.17618055641651154,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.3885,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.06837606837606838,
62
+ "grad_norm": 0.17036275565624237,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.3574,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.07692307692307693,
69
+ "grad_norm": 0.18832312524318695,
70
+ "learning_rate": 0.00018,
71
+ "loss": 1.2256,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08547008547008547,
76
+ "grad_norm": 0.22157786786556244,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.515,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.09401709401709402,
83
+ "grad_norm": 0.21728643774986267,
84
+ "learning_rate": 0.0001999976474595967,
85
+ "loss": 1.4505,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.10256410256410256,
90
+ "grad_norm": 0.16113220155239105,
91
+ "learning_rate": 0.00019999058994907564,
92
+ "loss": 1.132,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.1111111111111111,
97
+ "grad_norm": 0.1798534393310547,
98
+ "learning_rate": 0.00019997882780049847,
99
+ "loss": 1.2355,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.11965811965811966,
104
+ "grad_norm": 0.19335126876831055,
105
+ "learning_rate": 0.0001999623615672837,
106
+ "loss": 1.4485,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.1282051282051282,
111
+ "grad_norm": 0.14973561465740204,
112
+ "learning_rate": 0.00019994119202418098,
113
+ "loss": 1.4852,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.13675213675213677,
118
+ "grad_norm": 0.1763419359922409,
119
+ "learning_rate": 0.00019991532016723439,
120
+ "loss": 1.0831,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.1452991452991453,
125
+ "grad_norm": 0.148220494389534,
126
+ "learning_rate": 0.00019988474721373568,
127
+ "loss": 1.5454,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.15384615384615385,
132
+ "grad_norm": 0.1581086665391922,
133
+ "learning_rate": 0.00019984947460216707,
134
+ "loss": 0.9387,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.1623931623931624,
139
+ "grad_norm": 0.1937003880739212,
140
+ "learning_rate": 0.00019980950399213344,
141
+ "loss": 1.1612,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.17094017094017094,
146
+ "grad_norm": 0.15193545818328857,
147
+ "learning_rate": 0.00019976483726428422,
148
+ "loss": 0.9678,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1794871794871795,
153
+ "grad_norm": 0.17265811562538147,
154
+ "learning_rate": 0.0001997154765202251,
155
+ "loss": 1.0147,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.18803418803418803,
160
+ "grad_norm": 0.16466519236564636,
161
+ "learning_rate": 0.00019966142408241901,
162
+ "loss": 1.1492,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.19658119658119658,
167
+ "grad_norm": 0.17746295034885406,
168
+ "learning_rate": 0.00019960268249407675,
169
+ "loss": 1.2277,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.20512820512820512,
174
+ "grad_norm": 0.1838495433330536,
175
+ "learning_rate": 0.00019953925451903756,
176
+ "loss": 1.1559,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.21367521367521367,
181
+ "grad_norm": 0.1542479395866394,
182
+ "learning_rate": 0.0001994711431416389,
183
+ "loss": 1.855,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.2222222222222222,
188
+ "grad_norm": 0.1788703054189682,
189
+ "learning_rate": 0.00019939835156657616,
190
+ "loss": 1.6273,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.23076923076923078,
195
+ "grad_norm": 0.15661294758319855,
196
+ "learning_rate": 0.00019932088321875172,
197
+ "loss": 1.0783,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.23931623931623933,
202
+ "grad_norm": 0.1869712620973587,
203
+ "learning_rate": 0.00019923874174311394,
204
+ "loss": 0.9181,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.24786324786324787,
209
+ "grad_norm": 0.14521349966526031,
210
+ "learning_rate": 0.0001991519310044857,
211
+ "loss": 1.4428,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.2564102564102564,
216
+ "grad_norm": 0.17194955050945282,
217
+ "learning_rate": 0.00019906045508738228,
218
+ "loss": 1.3213,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.26495726495726496,
223
+ "grad_norm": 0.14739835262298584,
224
+ "learning_rate": 0.0001989643182958196,
225
+ "loss": 0.9933,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.27350427350427353,
230
+ "grad_norm": 0.17825335264205933,
231
+ "learning_rate": 0.00019886352515311134,
232
+ "loss": 1.034,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.28205128205128205,
237
+ "grad_norm": 0.16200387477874756,
238
+ "learning_rate": 0.0001987580804016563,
239
+ "loss": 1.3064,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.2905982905982906,
244
+ "grad_norm": 0.170911967754364,
245
+ "learning_rate": 0.00019864798900271532,
246
+ "loss": 1.2321,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.29914529914529914,
251
+ "grad_norm": 0.16599859297275543,
252
+ "learning_rate": 0.0001985332561361776,
253
+ "loss": 0.9447,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.3076923076923077,
258
+ "grad_norm": 0.14686603844165802,
259
+ "learning_rate": 0.00019841388720031727,
260
+ "loss": 0.8823,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.3162393162393162,
265
+ "grad_norm": 0.1870049089193344,
266
+ "learning_rate": 0.00019828988781153917,
267
+ "loss": 1.1041,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.3247863247863248,
272
+ "grad_norm": 0.1619299054145813,
273
+ "learning_rate": 0.00019816126380411476,
274
+ "loss": 0.9918,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.3333333333333333,
279
+ "grad_norm": 0.18731147050857544,
280
+ "learning_rate": 0.00019802802122990758,
281
+ "loss": 1.0642,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.3418803418803419,
286
+ "grad_norm": 0.17905616760253906,
287
+ "learning_rate": 0.00019789016635808837,
288
+ "loss": 1.0877,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.3504273504273504,
293
+ "grad_norm": 0.15318270027637482,
294
+ "learning_rate": 0.00019774770567484022,
295
+ "loss": 1.2165,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.358974358974359,
300
+ "grad_norm": 0.14854711294174194,
301
+ "learning_rate": 0.00019760064588305345,
302
+ "loss": 0.9812,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.36752136752136755,
307
+ "grad_norm": 0.15519340336322784,
308
+ "learning_rate": 0.00019744899390201006,
309
+ "loss": 0.9977,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.37606837606837606,
314
+ "grad_norm": 0.1589617133140564,
315
+ "learning_rate": 0.0001972927568670583,
316
+ "loss": 1.4097,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.38461538461538464,
321
+ "grad_norm": 0.17286093533039093,
322
+ "learning_rate": 0.00019713194212927696,
323
+ "loss": 1.1385,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.39316239316239315,
328
+ "grad_norm": 0.19325074553489685,
329
+ "learning_rate": 0.00019696655725512933,
330
+ "loss": 0.9997,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.4017094017094017,
335
+ "grad_norm": 0.18447531759738922,
336
+ "learning_rate": 0.00019679661002610743,
337
+ "loss": 1.0873,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.41025641025641024,
342
+ "grad_norm": 0.16223366558551788,
343
+ "learning_rate": 0.00019662210843836574,
344
+ "loss": 0.99,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.4188034188034188,
349
+ "grad_norm": 0.1919640749692917,
350
+ "learning_rate": 0.0001964430607023449,
351
+ "loss": 1.0171,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.42735042735042733,
356
+ "grad_norm": 0.22606882452964783,
357
+ "learning_rate": 0.00019625947524238563,
358
+ "loss": 1.4172,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.4358974358974359,
363
+ "grad_norm": 0.17758312821388245,
364
+ "learning_rate": 0.00019607136069633212,
365
+ "loss": 0.9964,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.4444444444444444,
370
+ "grad_norm": 0.16785483062267303,
371
+ "learning_rate": 0.0001958787259151258,
372
+ "loss": 0.9883,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.452991452991453,
377
+ "grad_norm": 0.19499914348125458,
378
+ "learning_rate": 0.00019568157996238884,
379
+ "loss": 1.0293,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.46153846153846156,
384
+ "grad_norm": 0.15674076974391937,
385
+ "learning_rate": 0.0001954799321139975,
386
+ "loss": 1.3643,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.4700854700854701,
391
+ "grad_norm": 0.16759538650512695,
392
+ "learning_rate": 0.00019527379185764612,
393
+ "loss": 0.8998,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.47863247863247865,
398
+ "grad_norm": 0.20853222906589508,
399
+ "learning_rate": 0.00019506316889240027,
400
+ "loss": 1.4597,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.48717948717948717,
405
+ "grad_norm": 0.18584011495113373,
406
+ "learning_rate": 0.00019484807312824067,
407
+ "loss": 0.8848,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.49572649572649574,
412
+ "grad_norm": 0.24146708846092224,
413
+ "learning_rate": 0.0001946285146855968,
414
+ "loss": 1.0529,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.5042735042735043,
419
+ "grad_norm": 0.20457321405410767,
420
+ "learning_rate": 0.0001944045038948709,
421
+ "loss": 0.9917,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.5128205128205128,
426
+ "grad_norm": 0.21354275941848755,
427
+ "learning_rate": 0.00019417605129595157,
428
+ "loss": 0.9096,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.5213675213675214,
433
+ "grad_norm": 0.2198089212179184,
434
+ "learning_rate": 0.0001939431676377183,
435
+ "loss": 0.9228,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.5299145299145299,
440
+ "grad_norm": 0.18545866012573242,
441
+ "learning_rate": 0.0001937058638775353,
442
+ "loss": 0.8399,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.5384615384615384,
447
+ "grad_norm": 0.1578792780637741,
448
+ "learning_rate": 0.00019346415118073632,
449
+ "loss": 1.6315,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.5470085470085471,
454
+ "grad_norm": 0.23443493247032166,
455
+ "learning_rate": 0.00019321804092009906,
456
+ "loss": 1.0905,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.5555555555555556,
461
+ "grad_norm": 0.20623010396957397,
462
+ "learning_rate": 0.00019296754467531014,
463
+ "loss": 0.9367,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.5641025641025641,
468
+ "grad_norm": 0.24046015739440918,
469
+ "learning_rate": 0.00019271267423242024,
470
+ "loss": 0.9195,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.5726495726495726,
475
+ "grad_norm": 0.22675752639770508,
476
+ "learning_rate": 0.00019245344158328972,
477
+ "loss": 1.1275,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.5811965811965812,
482
+ "grad_norm": 0.22297680377960205,
483
+ "learning_rate": 0.0001921898589250242,
484
+ "loss": 0.9244,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.5897435897435898,
489
+ "grad_norm": 0.21324071288108826,
490
+ "learning_rate": 0.0001919219386594007,
491
+ "loss": 0.9706,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.5982905982905983,
496
+ "grad_norm": 0.21497191488742828,
497
+ "learning_rate": 0.00019164969339228422,
498
+ "loss": 1.0559,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.6068376068376068,
503
+ "grad_norm": 0.2526251971721649,
504
+ "learning_rate": 0.00019137313593303463,
505
+ "loss": 1.0632,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.6153846153846154,
510
+ "grad_norm": 0.19590331614017487,
511
+ "learning_rate": 0.00019109227929390378,
512
+ "loss": 1.8134,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.6239316239316239,
517
+ "grad_norm": 0.21532683074474335,
518
+ "learning_rate": 0.00019080713668942356,
519
+ "loss": 0.9466,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.6324786324786325,
524
+ "grad_norm": 0.2264883816242218,
525
+ "learning_rate": 0.00019051772153578389,
526
+ "loss": 0.8941,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.6410256410256411,
531
+ "grad_norm": 0.22985824942588806,
532
+ "learning_rate": 0.00019022404745020163,
533
+ "loss": 0.8991,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.6495726495726496,
538
+ "grad_norm": 0.19453634321689606,
539
+ "learning_rate": 0.00018992612825027976,
540
+ "loss": 0.9837,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.6581196581196581,
545
+ "grad_norm": 0.2547195851802826,
546
+ "learning_rate": 0.0001896239779533575,
547
+ "loss": 1.1035,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.6666666666666666,
552
+ "grad_norm": 0.20812910795211792,
553
+ "learning_rate": 0.00018931761077585035,
554
+ "loss": 0.8916,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.6752136752136753,
559
+ "grad_norm": 0.2176084816455841,
560
+ "learning_rate": 0.00018900704113258165,
561
+ "loss": 0.8826,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.6837606837606838,
566
+ "grad_norm": 0.2221064418554306,
567
+ "learning_rate": 0.00018869228363610404,
568
+ "loss": 0.9069,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.6923076923076923,
573
+ "grad_norm": 0.2675364911556244,
574
+ "learning_rate": 0.00018837335309601213,
575
+ "loss": 1.035,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.7008547008547008,
580
+ "grad_norm": 0.1994653195142746,
581
+ "learning_rate": 0.00018805026451824546,
582
+ "loss": 1.5854,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.7094017094017094,
587
+ "grad_norm": 0.20346811413764954,
588
+ "learning_rate": 0.00018772303310438275,
589
+ "loss": 1.4788,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.717948717948718,
594
+ "grad_norm": 0.22119802236557007,
595
+ "learning_rate": 0.00018739167425092644,
596
+ "loss": 1.4946,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.7264957264957265,
601
+ "grad_norm": 0.2174052894115448,
602
+ "learning_rate": 0.00018705620354857833,
603
+ "loss": 0.8667,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.7350427350427351,
608
+ "grad_norm": 0.2322807013988495,
609
+ "learning_rate": 0.00018671663678150607,
610
+ "loss": 0.861,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.7435897435897436,
615
+ "grad_norm": 0.22151263058185577,
616
+ "learning_rate": 0.0001863729899266004,
617
+ "loss": 0.8966,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.7521367521367521,
622
+ "grad_norm": 0.243766650557518,
623
+ "learning_rate": 0.0001860252791527236,
624
+ "loss": 1.2998,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.7606837606837606,
629
+ "grad_norm": 0.19212521612644196,
630
+ "learning_rate": 0.00018567352081994852,
631
+ "loss": 1.5215,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.7692307692307693,
636
+ "grad_norm": 0.20964723825454712,
637
+ "learning_rate": 0.00018531773147878895,
638
+ "loss": 1.4717,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.7777777777777778,
643
+ "grad_norm": 0.24561531841754913,
644
+ "learning_rate": 0.0001849579278694209,
645
+ "loss": 0.9569,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.7863247863247863,
650
+ "grad_norm": 0.23924781382083893,
651
+ "learning_rate": 0.00018459412692089494,
652
+ "loss": 0.9441,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.7948717948717948,
657
+ "grad_norm": 0.2302614450454712,
658
+ "learning_rate": 0.0001842263457503397,
659
+ "loss": 0.8417,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.8034188034188035,
664
+ "grad_norm": 0.24661926925182343,
665
+ "learning_rate": 0.00018385460166215638,
666
+ "loss": 1.1297,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.811965811965812,
671
+ "grad_norm": 0.24925513565540314,
672
+ "learning_rate": 0.00018347891214720477,
673
+ "loss": 0.8999,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.8205128205128205,
678
+ "grad_norm": 0.19934344291687012,
679
+ "learning_rate": 0.00018309929488198012,
680
+ "loss": 1.4818,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.8290598290598291,
685
+ "grad_norm": 0.24845215678215027,
686
+ "learning_rate": 0.00018271576772778154,
687
+ "loss": 0.9454,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.8376068376068376,
692
+ "grad_norm": 0.22845034301280975,
693
+ "learning_rate": 0.00018232834872987147,
694
+ "loss": 1.5063,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.8461538461538461,
699
+ "grad_norm": 0.2563302516937256,
700
+ "learning_rate": 0.00018193705611662696,
701
+ "loss": 0.9946,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8547008547008547,
706
+ "grad_norm": 0.30030304193496704,
707
+ "learning_rate": 0.0001815419082986815,
708
+ "loss": 1.0936,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.8632478632478633,
713
+ "grad_norm": 0.22599591314792633,
714
+ "learning_rate": 0.00018114292386805936,
715
+ "loss": 1.346,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.8717948717948718,
720
+ "grad_norm": 0.20411820709705353,
721
+ "learning_rate": 0.00018074012159730032,
722
+ "loss": 1.5147,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.8803418803418803,
727
+ "grad_norm": 0.20635190606117249,
728
+ "learning_rate": 0.00018033352043857675,
729
+ "loss": 1.1425,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.8888888888888888,
734
+ "grad_norm": 0.22327086329460144,
735
+ "learning_rate": 0.00017992313952280172,
736
+ "loss": 1.4435,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.8974358974358975,
741
+ "grad_norm": 0.2183496206998825,
742
+ "learning_rate": 0.00017950899815872892,
743
+ "loss": 1.5659,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.905982905982906,
748
+ "grad_norm": 0.31636252999305725,
749
+ "learning_rate": 0.00017909111583204422,
750
+ "loss": 1.4703,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.9145299145299145,
755
+ "grad_norm": 0.3305496275424957,
756
+ "learning_rate": 0.0001786695122044487,
757
+ "loss": 1.0904,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.9230769230769231,
762
+ "grad_norm": 0.22857435047626495,
763
+ "learning_rate": 0.0001782442071127338,
764
+ "loss": 1.3801,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.9316239316239316,
769
+ "grad_norm": 0.31968221068382263,
770
+ "learning_rate": 0.0001778152205678477,
771
+ "loss": 1.4907,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.9401709401709402,
776
+ "grad_norm": 0.27950960397720337,
777
+ "learning_rate": 0.00017738257275395404,
778
+ "loss": 1.0864,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.9487179487179487,
783
+ "grad_norm": 0.2740281820297241,
784
+ "learning_rate": 0.00017694628402748202,
785
+ "loss": 0.9241,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.9572649572649573,
790
+ "grad_norm": 0.26951318979263306,
791
+ "learning_rate": 0.0001765063749161688,
792
+ "loss": 0.9894,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.9658119658119658,
797
+ "grad_norm": 0.2811899781227112,
798
+ "learning_rate": 0.00017606286611809353,
799
+ "loss": 0.9659,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.9743589743589743,
804
+ "grad_norm": 0.23854824900627136,
805
+ "learning_rate": 0.00017561577850070355,
806
+ "loss": 1.0623,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.9829059829059829,
811
+ "grad_norm": 0.21959957480430603,
812
+ "learning_rate": 0.00017516513309983253,
813
+ "loss": 0.8671,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.9914529914529915,
818
+ "grad_norm": 0.3096697926521301,
819
+ "learning_rate": 0.00017471095111871074,
820
+ "loss": 1.0756,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 1.0,
825
+ "grad_norm": 0.23363932967185974,
826
+ "learning_rate": 0.0001742532539269674,
827
+ "loss": 0.8988,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 1.0085470085470085,
832
+ "grad_norm": 0.23965218663215637,
833
+ "learning_rate": 0.00017379206305962526,
834
+ "loss": 0.7737,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 1.017094017094017,
839
+ "grad_norm": 0.24553611874580383,
840
+ "learning_rate": 0.00017332740021608722,
841
+ "loss": 0.7793,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 1.0256410256410255,
846
+ "grad_norm": 0.267673522233963,
847
+ "learning_rate": 0.00017285928725911562,
848
+ "loss": 0.8077,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 1.0341880341880343,
853
+ "grad_norm": 0.3069080114364624,
854
+ "learning_rate": 0.00017238774621380337,
855
+ "loss": 0.8226,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 1.0427350427350428,
860
+ "grad_norm": 0.26568329334259033,
861
+ "learning_rate": 0.00017191279926653761,
862
+ "loss": 1.5833,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 1.0512820512820513,
867
+ "grad_norm": 0.2673753499984741,
868
+ "learning_rate": 0.00017143446876395602,
869
+ "loss": 1.3896,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 1.0598290598290598,
874
+ "grad_norm": 0.23525093495845795,
875
+ "learning_rate": 0.00017095277721189528,
876
+ "loss": 1.3125,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0683760683760684,
881
+ "grad_norm": 0.3066873550415039,
882
+ "learning_rate": 0.00017046774727433222,
883
+ "loss": 0.8894,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0769230769230769,
888
+ "grad_norm": 0.27280548214912415,
889
+ "learning_rate": 0.00016997940177231722,
890
+ "loss": 0.7649,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.0854700854700854,
895
+ "grad_norm": 0.23357781767845154,
896
+ "learning_rate": 0.00016948776368290084,
897
+ "loss": 1.4143,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.0940170940170941,
902
+ "grad_norm": 0.2928774356842041,
903
+ "learning_rate": 0.00016899285613805246,
904
+ "loss": 0.6522,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.1025641025641026,
909
+ "grad_norm": 0.33789336681365967,
910
+ "learning_rate": 0.00016849470242357196,
911
+ "loss": 0.7737,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.1111111111111112,
916
+ "grad_norm": 0.3078365921974182,
917
+ "learning_rate": 0.00016799332597799413,
918
+ "loss": 0.8068,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.1196581196581197,
923
+ "grad_norm": 0.3175398111343384,
924
+ "learning_rate": 0.00016748875039148593,
925
+ "loss": 1.223,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.1282051282051282,
930
+ "grad_norm": 0.27531448006629944,
931
+ "learning_rate": 0.0001669809994047364,
932
+ "loss": 1.3081,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.1367521367521367,
937
+ "grad_norm": 0.34105026721954346,
938
+ "learning_rate": 0.0001664700969078398,
939
+ "loss": 0.9031,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.1452991452991452,
944
+ "grad_norm": 0.25465068221092224,
945
+ "learning_rate": 0.00016595606693917142,
946
+ "loss": 1.3237,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.1538461538461537,
951
+ "grad_norm": 0.2841501533985138,
952
+ "learning_rate": 0.00016543893368425666,
953
+ "loss": 0.7393,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.1623931623931625,
958
+ "grad_norm": 0.3230992257595062,
959
+ "learning_rate": 0.00016491872147463306,
960
+ "loss": 0.7437,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.170940170940171,
965
+ "grad_norm": 0.25824740529060364,
966
+ "learning_rate": 0.00016439545478670543,
967
+ "loss": 1.883,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.1794871794871795,
972
+ "grad_norm": 0.31415536999702454,
973
+ "learning_rate": 0.00016386915824059427,
974
+ "loss": 0.703,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.188034188034188,
979
+ "grad_norm": 0.26885557174682617,
980
+ "learning_rate": 0.00016333985659897735,
981
+ "loss": 0.6592,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.1965811965811965,
986
+ "grad_norm": 0.4018881618976593,
987
+ "learning_rate": 0.00016280757476592466,
988
+ "loss": 0.7733,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.205128205128205,
993
+ "grad_norm": 0.3181138038635254,
994
+ "learning_rate": 0.0001622723377857265,
995
+ "loss": 0.7577,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.2136752136752136,
1000
+ "grad_norm": 0.2720906436443329,
1001
+ "learning_rate": 0.00016173417084171536,
1002
+ "loss": 1.3883,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.2222222222222223,
1007
+ "grad_norm": 0.34472835063934326,
1008
+ "learning_rate": 0.00016119309925508078,
1009
+ "loss": 0.7757,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.2307692307692308,
1014
+ "grad_norm": 0.40166720747947693,
1015
+ "learning_rate": 0.0001606491484836782,
1016
+ "loss": 0.79,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.2393162393162394,
1021
+ "grad_norm": 0.38203030824661255,
1022
+ "learning_rate": 0.00016010234412083086,
1023
+ "loss": 0.8184,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.2478632478632479,
1028
+ "grad_norm": 0.3825059235095978,
1029
+ "learning_rate": 0.00015955271189412598,
1030
+ "loss": 0.9065,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.2564102564102564,
1035
+ "grad_norm": 0.403533935546875,
1036
+ "learning_rate": 0.00015900027766420393,
1037
+ "loss": 0.7605,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.264957264957265,
1042
+ "grad_norm": 0.3657178282737732,
1043
+ "learning_rate": 0.00015844506742354164,
1044
+ "loss": 0.8265,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.2735042735042734,
1049
+ "grad_norm": 0.2825511693954468,
1050
+ "learning_rate": 0.00015788710729522953,
1051
+ "loss": 1.166,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.282051282051282,
1056
+ "grad_norm": 0.4000828266143799,
1057
+ "learning_rate": 0.00015732642353174259,
1058
+ "loss": 1.2792,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.2905982905982907,
1063
+ "grad_norm": 0.3135271668434143,
1064
+ "learning_rate": 0.0001567630425137049,
1065
+ "loss": 0.6227,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.2991452991452992,
1070
+ "grad_norm": 0.3828388452529907,
1071
+ "learning_rate": 0.00015619699074864864,
1072
+ "loss": 0.6989,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.3076923076923077,
1077
+ "grad_norm": 0.45689550042152405,
1078
+ "learning_rate": 0.00015562829486976673,
1079
+ "loss": 0.9088,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.3162393162393162,
1084
+ "grad_norm": 0.36523374915122986,
1085
+ "learning_rate": 0.00015505698163465986,
1086
+ "loss": 0.9859,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.3247863247863247,
1091
+ "grad_norm": 0.4206138551235199,
1092
+ "learning_rate": 0.00015448307792407734,
1093
+ "loss": 0.7771,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.3333333333333333,
1098
+ "grad_norm": 0.3400786817073822,
1099
+ "learning_rate": 0.00015390661074065256,
1100
+ "loss": 0.772,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.341880341880342,
1105
+ "grad_norm": 0.334692120552063,
1106
+ "learning_rate": 0.00015332760720763232,
1107
+ "loss": 1.3839,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.3504273504273505,
1112
+ "grad_norm": 0.4513654112815857,
1113
+ "learning_rate": 0.00015274609456760073,
1114
+ "loss": 0.8578,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.358974358974359,
1119
+ "grad_norm": 0.4215463399887085,
1120
+ "learning_rate": 0.00015216210018119733,
1121
+ "loss": 0.9154,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.3675213675213675,
1126
+ "grad_norm": 0.38081440329551697,
1127
+ "learning_rate": 0.00015157565152583002,
1128
+ "loss": 0.6723,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.376068376068376,
1133
+ "grad_norm": 0.38604873418807983,
1134
+ "learning_rate": 0.0001509867761943818,
1135
+ "loss": 0.9546,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.3846153846153846,
1140
+ "grad_norm": 0.39846640825271606,
1141
+ "learning_rate": 0.00015039550189391298,
1142
+ "loss": 0.7379,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.393162393162393,
1147
+ "grad_norm": 0.3619799315929413,
1148
+ "learning_rate": 0.0001498018564443571,
1149
+ "loss": 1.12,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.4017094017094016,
1154
+ "grad_norm": 0.4657539427280426,
1155
+ "learning_rate": 0.0001492058677772123,
1156
+ "loss": 1.0395,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.4102564102564101,
1161
+ "grad_norm": 0.3850860893726349,
1162
+ "learning_rate": 0.000148607563934227,
1163
+ "loss": 0.7949,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.4188034188034189,
1168
+ "grad_norm": 0.30473998188972473,
1169
+ "learning_rate": 0.00014800697306608044,
1170
+ "loss": 0.6285,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.4273504273504274,
1175
+ "grad_norm": 0.36891016364097595,
1176
+ "learning_rate": 0.00014740412343105828,
1177
+ "loss": 0.9947,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.435897435897436,
1182
+ "grad_norm": 0.3746401071548462,
1183
+ "learning_rate": 0.00014679904339372302,
1184
+ "loss": 0.7204,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.4444444444444444,
1189
+ "grad_norm": 0.4085482060909271,
1190
+ "learning_rate": 0.00014619176142357935,
1191
+ "loss": 0.7145,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.452991452991453,
1196
+ "grad_norm": 0.40742969512939453,
1197
+ "learning_rate": 0.0001455823060937347,
1198
+ "loss": 0.8273,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.4615384615384617,
1203
+ "grad_norm": 0.3882700502872467,
1204
+ "learning_rate": 0.00014497070607955476,
1205
+ "loss": 0.7025,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.4700854700854702,
1210
+ "grad_norm": 0.43999457359313965,
1211
+ "learning_rate": 0.00014435699015731448,
1212
+ "loss": 0.7473,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.4786324786324787,
1217
+ "grad_norm": 0.3841669261455536,
1218
+ "learning_rate": 0.00014374118720284388,
1219
+ "loss": 0.8794,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.4871794871794872,
1224
+ "grad_norm": 0.3169039189815521,
1225
+ "learning_rate": 0.00014312332619016965,
1226
+ "loss": 1.007,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4957264957264957,
1231
+ "grad_norm": 0.44292953610420227,
1232
+ "learning_rate": 0.0001425034361901516,
1233
+ "loss": 0.846,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.5042735042735043,
1238
+ "grad_norm": 0.3945798873901367,
1239
+ "learning_rate": 0.00014188154636911524,
1240
+ "loss": 1.3956,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.5128205128205128,
1245
+ "grad_norm": 0.4760408103466034,
1246
+ "learning_rate": 0.0001412576859874791,
1247
+ "loss": 0.7811,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.5213675213675213,
1252
+ "grad_norm": 0.401869535446167,
1253
+ "learning_rate": 0.00014063188439837832,
1254
+ "loss": 0.6903,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.5299145299145298,
1259
+ "grad_norm": 0.3994334042072296,
1260
+ "learning_rate": 0.0001400041710462833,
1261
+ "loss": 0.688,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.5384615384615383,
1266
+ "grad_norm": 0.41962575912475586,
1267
+ "learning_rate": 0.0001393745754656146,
1268
+ "loss": 0.7697,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.547008547008547,
1273
+ "grad_norm": 0.36107930541038513,
1274
+ "learning_rate": 0.00013874312727935292,
1275
+ "loss": 0.715,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.5555555555555556,
1280
+ "grad_norm": 0.3828651010990143,
1281
+ "learning_rate": 0.00013810985619764572,
1282
+ "loss": 1.3298,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.564102564102564,
1287
+ "grad_norm": 0.3839617967605591,
1288
+ "learning_rate": 0.00013747479201640914,
1289
+ "loss": 0.6851,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.5726495726495726,
1294
+ "grad_norm": 0.4327555298805237,
1295
+ "learning_rate": 0.00013683796461592604,
1296
+ "loss": 0.7906,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.5811965811965814,
1301
+ "grad_norm": 0.3910170793533325,
1302
+ "learning_rate": 0.00013619940395944027,
1303
+ "loss": 0.7832,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.5897435897435899,
1308
+ "grad_norm": 0.4029540419578552,
1309
+ "learning_rate": 0.00013555914009174663,
1310
+ "loss": 0.7723,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.5982905982905984,
1315
+ "grad_norm": 0.3986589014530182,
1316
+ "learning_rate": 0.00013491720313777756,
1317
+ "loss": 1.1658,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.606837606837607,
1322
+ "grad_norm": 0.3962538242340088,
1323
+ "learning_rate": 0.00013427362330118543,
1324
+ "loss": 0.7481,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.6153846153846154,
1329
+ "grad_norm": 0.4297255277633667,
1330
+ "learning_rate": 0.0001336284308629216,
1331
+ "loss": 0.9531,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.623931623931624,
1336
+ "grad_norm": 0.3742808699607849,
1337
+ "learning_rate": 0.00013298165617981172,
1338
+ "loss": 0.9516,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.6324786324786325,
1343
+ "grad_norm": 0.44721004366874695,
1344
+ "learning_rate": 0.00013233332968312715,
1345
+ "loss": 1.075,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.641025641025641,
1350
+ "grad_norm": 0.41275331377983093,
1351
+ "learning_rate": 0.0001316834818771535,
1352
+ "loss": 0.8295,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.6495726495726495,
1357
+ "grad_norm": 0.46620428562164307,
1358
+ "learning_rate": 0.00013103214333775521,
1359
+ "loss": 0.8314,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.658119658119658,
1364
+ "grad_norm": 0.4467974901199341,
1365
+ "learning_rate": 0.00013037934471093682,
1366
+ "loss": 0.7321,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.6666666666666665,
1371
+ "grad_norm": 0.42806383967399597,
1372
+ "learning_rate": 0.00012972511671140125,
1373
+ "loss": 0.7144,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.6752136752136753,
1378
+ "grad_norm": 0.3721958100795746,
1379
+ "learning_rate": 0.00012906949012110456,
1380
+ "loss": 1.0117,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.6837606837606838,
1385
+ "grad_norm": 0.46833130717277527,
1386
+ "learning_rate": 0.00012841249578780757,
1387
+ "loss": 0.9599,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.6923076923076923,
1392
+ "grad_norm": 0.3547254502773285,
1393
+ "learning_rate": 0.00012775416462362457,
1394
+ "loss": 0.8255,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.7008547008547008,
1399
+ "grad_norm": 0.36470168828964233,
1400
+ "learning_rate": 0.00012709452760356884,
1401
+ "loss": 1.3796,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.7094017094017095,
1406
+ "grad_norm": 0.4088481068611145,
1407
+ "learning_rate": 0.00012643361576409516,
1408
+ "loss": 0.818,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.717948717948718,
1413
+ "grad_norm": 0.43268319964408875,
1414
+ "learning_rate": 0.00012577146020163968,
1415
+ "loss": 0.8157,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.7264957264957266,
1420
+ "grad_norm": 0.4660526216030121,
1421
+ "learning_rate": 0.00012510809207115666,
1422
+ "loss": 0.775,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.735042735042735,
1427
+ "grad_norm": 0.41217854619026184,
1428
+ "learning_rate": 0.00012444354258465268,
1429
+ "loss": 0.7172,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.7435897435897436,
1434
+ "grad_norm": 0.4177812933921814,
1435
+ "learning_rate": 0.00012377784300971807,
1436
+ "loss": 1.1308,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.7521367521367521,
1441
+ "grad_norm": 0.3943150043487549,
1442
+ "learning_rate": 0.0001231110246680558,
1443
+ "loss": 1.4001,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.7606837606837606,
1448
+ "grad_norm": 0.48257848620414734,
1449
+ "learning_rate": 0.00012244311893400763,
1450
+ "loss": 0.9118,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.7692307692307692,
1455
+ "grad_norm": 0.4754193127155304,
1456
+ "learning_rate": 0.00012177415723307808,
1457
+ "loss": 0.825,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.7777777777777777,
1462
+ "grad_norm": 0.3812815546989441,
1463
+ "learning_rate": 0.00012110417104045575,
1464
+ "loss": 0.6433,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.7863247863247862,
1469
+ "grad_norm": 0.3967946469783783,
1470
+ "learning_rate": 0.00012043319187953241,
1471
+ "loss": 0.8549,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.7948717948717947,
1476
+ "grad_norm": 0.4312019348144531,
1477
+ "learning_rate": 0.00011976125132041974,
1478
+ "loss": 0.8387,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.8034188034188035,
1483
+ "grad_norm": 0.4585026204586029,
1484
+ "learning_rate": 0.00011908838097846404,
1485
+ "loss": 0.9471,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.811965811965812,
1490
+ "grad_norm": 0.4149639904499054,
1491
+ "learning_rate": 0.00011841461251275867,
1492
+ "loss": 1.0415,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.8205128205128205,
1497
+ "grad_norm": 0.48069992661476135,
1498
+ "learning_rate": 0.00011773997762465429,
1499
+ "loss": 0.7534,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.8290598290598292,
1504
+ "grad_norm": 0.3820441961288452,
1505
+ "learning_rate": 0.0001170645080562676,
1506
+ "loss": 0.8292,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.8376068376068377,
1511
+ "grad_norm": 0.3951680660247803,
1512
+ "learning_rate": 0.00011638823558898762,
1513
+ "loss": 0.6923,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.8461538461538463,
1518
+ "grad_norm": 0.40777531266212463,
1519
+ "learning_rate": 0.00011571119204198037,
1520
+ "loss": 0.7335,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.8547008547008548,
1525
+ "grad_norm": 0.3792341649532318,
1526
+ "learning_rate": 0.00011503340927069189,
1527
+ "loss": 0.8608,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.8632478632478633,
1532
+ "grad_norm": 0.36157581210136414,
1533
+ "learning_rate": 0.00011435491916534919,
1534
+ "loss": 0.7314,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.8717948717948718,
1539
+ "grad_norm": 0.41833943128585815,
1540
+ "learning_rate": 0.00011367575364946006,
1541
+ "loss": 0.7662,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.8803418803418803,
1546
+ "grad_norm": 0.45951926708221436,
1547
+ "learning_rate": 0.00011299594467831078,
1548
+ "loss": 0.6988,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.8888888888888888,
1553
+ "grad_norm": 0.4588642120361328,
1554
+ "learning_rate": 0.00011231552423746283,
1555
+ "loss": 0.8544,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.8974358974358974,
1560
+ "grad_norm": 0.3614063560962677,
1561
+ "learning_rate": 0.00011163452434124773,
1562
+ "loss": 0.728,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.9059829059829059,
1567
+ "grad_norm": 0.4452153742313385,
1568
+ "learning_rate": 0.00011095297703126093,
1569
+ "loss": 0.7399,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.9145299145299144,
1574
+ "grad_norm": 0.42948612570762634,
1575
+ "learning_rate": 0.00011027091437485404,
1576
+ "loss": 0.9105,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.9230769230769231,
1581
+ "grad_norm": 0.37950897216796875,
1582
+ "learning_rate": 0.00010958836846362621,
1583
+ "loss": 0.9612,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.9316239316239316,
1588
+ "grad_norm": 0.4386560916900635,
1589
+ "learning_rate": 0.00010890537141191417,
1590
+ "loss": 0.683,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.9401709401709402,
1595
+ "grad_norm": 0.4166669547557831,
1596
+ "learning_rate": 0.00010822195535528106,
1597
+ "loss": 1.1851,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.9487179487179487,
1602
+ "grad_norm": 0.4029337465763092,
1603
+ "learning_rate": 0.00010753815244900458,
1604
+ "loss": 0.6721,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.9572649572649574,
1609
+ "grad_norm": 0.47789204120635986,
1610
+ "learning_rate": 0.00010685399486656406,
1611
+ "loss": 0.8654,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.965811965811966,
1616
+ "grad_norm": 0.4141186475753784,
1617
+ "learning_rate": 0.00010616951479812658,
1618
+ "loss": 0.7619,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.9743589743589745,
1623
+ "grad_norm": 0.4745655655860901,
1624
+ "learning_rate": 0.00010548474444903247,
1625
+ "loss": 0.698,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.982905982905983,
1630
+ "grad_norm": 0.4075687825679779,
1631
+ "learning_rate": 0.00010479971603828,
1632
+ "loss": 0.7387,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.9914529914529915,
1637
+ "grad_norm": 0.37726572155952454,
1638
+ "learning_rate": 0.00010411446179700943,
1639
+ "loss": 0.714,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 2.0,
1644
+ "grad_norm": 0.5989537239074707,
1645
+ "learning_rate": 0.00010342901396698659,
1646
+ "loss": 0.7816,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 2.0085470085470085,
1651
+ "grad_norm": 0.3381822109222412,
1652
+ "learning_rate": 0.00010274340479908568,
1653
+ "loss": 0.443,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 2.017094017094017,
1658
+ "grad_norm": 0.375904381275177,
1659
+ "learning_rate": 0.00010205766655177215,
1660
+ "loss": 0.4966,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 2.0256410256410255,
1665
+ "grad_norm": 0.3564665615558624,
1666
+ "learning_rate": 0.00010137183148958463,
1667
+ "loss": 0.6866,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 2.034188034188034,
1672
+ "grad_norm": 0.4133633077144623,
1673
+ "learning_rate": 0.00010068593188161697,
1674
+ "loss": 0.5057,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 2.0427350427350426,
1679
+ "grad_norm": 0.4830314517021179,
1680
+ "learning_rate": 0.0001,
1681
+ "loss": 0.6148,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 2.051282051282051,
1686
+ "grad_norm": 0.4566143751144409,
1687
+ "learning_rate": 9.931406811838308e-05,
1688
+ "loss": 0.5323,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 2.0598290598290596,
1693
+ "grad_norm": 0.4714205265045166,
1694
+ "learning_rate": 9.862816851041541e-05,
1695
+ "loss": 0.4689,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 2.0683760683760686,
1700
+ "grad_norm": 0.4094763696193695,
1701
+ "learning_rate": 9.79423334482279e-05,
1702
+ "loss": 0.6019,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 2.076923076923077,
1707
+ "grad_norm": 0.5059089660644531,
1708
+ "learning_rate": 9.725659520091433e-05,
1709
+ "loss": 0.5675,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 2.0854700854700856,
1714
+ "grad_norm": 0.49986734986305237,
1715
+ "learning_rate": 9.657098603301346e-05,
1716
+ "loss": 0.6499,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 2.094017094017094,
1721
+ "grad_norm": 0.42914658784866333,
1722
+ "learning_rate": 9.588553820299056e-05,
1723
+ "loss": 0.513,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 2.1025641025641026,
1728
+ "grad_norm": 0.5760869979858398,
1729
+ "learning_rate": 9.520028396172003e-05,
1730
+ "loss": 0.8912,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 2.111111111111111,
1735
+ "grad_norm": 0.5276662707328796,
1736
+ "learning_rate": 9.451525555096753e-05,
1737
+ "loss": 0.5903,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 2.1196581196581197,
1742
+ "grad_norm": 0.5043647289276123,
1743
+ "learning_rate": 9.383048520187344e-05,
1744
+ "loss": 0.5089,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 2.128205128205128,
1749
+ "grad_norm": 0.522574782371521,
1750
+ "learning_rate": 9.314600513343595e-05,
1751
+ "loss": 0.5059,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 2.1367521367521367,
1756
+ "grad_norm": 0.48663464188575745,
1757
+ "learning_rate": 9.246184755099545e-05,
1758
+ "loss": 0.9519,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 2.1452991452991452,
1763
+ "grad_norm": 0.5056342482566833,
1764
+ "learning_rate": 9.177804464471898e-05,
1765
+ "loss": 1.1279,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 2.1538461538461537,
1770
+ "grad_norm": 0.5033504366874695,
1771
+ "learning_rate": 9.109462858808586e-05,
1772
+ "loss": 1.1843,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 2.1623931623931623,
1777
+ "grad_norm": 0.48481982946395874,
1778
+ "learning_rate": 9.041163153637381e-05,
1779
+ "loss": 0.5202,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 2.1709401709401708,
1784
+ "grad_norm": 0.5677529573440552,
1785
+ "learning_rate": 8.972908562514598e-05,
1786
+ "loss": 0.5685,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 2.1794871794871793,
1791
+ "grad_norm": 0.6009398102760315,
1792
+ "learning_rate": 8.904702296873912e-05,
1793
+ "loss": 0.6472,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 2.1880341880341883,
1798
+ "grad_norm": 0.5119011998176575,
1799
+ "learning_rate": 8.836547565875227e-05,
1800
+ "loss": 0.501,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 2.1965811965811968,
1805
+ "grad_norm": 0.44192251563072205,
1806
+ "learning_rate": 8.76844757625372e-05,
1807
+ "loss": 1.1073,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 2.2051282051282053,
1812
+ "grad_norm": 0.5733199715614319,
1813
+ "learning_rate": 8.70040553216892e-05,
1814
+ "loss": 0.5188,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 2.213675213675214,
1819
+ "grad_norm": 0.5789536237716675,
1820
+ "learning_rate": 8.632424635053997e-05,
1821
+ "loss": 0.719,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 2.2222222222222223,
1826
+ "grad_norm": 0.4420778453350067,
1827
+ "learning_rate": 8.564508083465079e-05,
1828
+ "loss": 0.4935,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 2.230769230769231,
1833
+ "grad_norm": 0.4915638267993927,
1834
+ "learning_rate": 8.496659072930813e-05,
1835
+ "loss": 0.5342,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 2.2393162393162394,
1840
+ "grad_norm": 0.4589202404022217,
1841
+ "learning_rate": 8.428880795801965e-05,
1842
+ "loss": 0.4839,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 2.247863247863248,
1847
+ "grad_norm": 0.5273900628089905,
1848
+ "learning_rate": 8.36117644110124e-05,
1849
+ "loss": 0.8426,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 2.2564102564102564,
1854
+ "grad_norm": 0.5588923096656799,
1855
+ "learning_rate": 8.293549194373243e-05,
1856
+ "loss": 0.5051,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 2.264957264957265,
1861
+ "grad_norm": 0.4949032664299011,
1862
+ "learning_rate": 8.226002237534572e-05,
1863
+ "loss": 0.4751,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 2.2735042735042734,
1868
+ "grad_norm": 0.6772957444190979,
1869
+ "learning_rate": 8.158538748724139e-05,
1870
+ "loss": 0.9695,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 2.282051282051282,
1875
+ "grad_norm": 0.5875369906425476,
1876
+ "learning_rate": 8.091161902153595e-05,
1877
+ "loss": 0.5566,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 2.2905982905982905,
1882
+ "grad_norm": 0.4558923840522766,
1883
+ "learning_rate": 8.023874867958027e-05,
1884
+ "loss": 0.8852,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 2.299145299145299,
1889
+ "grad_norm": 0.5420984625816345,
1890
+ "learning_rate": 7.95668081204676e-05,
1891
+ "loss": 0.8007,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 2.3076923076923075,
1896
+ "grad_norm": 0.5497881770133972,
1897
+ "learning_rate": 7.889582895954427e-05,
1898
+ "loss": 0.5261,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 2.316239316239316,
1903
+ "grad_norm": 0.5697259306907654,
1904
+ "learning_rate": 7.822584276692191e-05,
1905
+ "loss": 0.4692,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 2.324786324786325,
1910
+ "grad_norm": 0.5963535904884338,
1911
+ "learning_rate": 7.755688106599241e-05,
1912
+ "loss": 0.5553,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 2.3333333333333335,
1917
+ "grad_norm": 0.5704771280288696,
1918
+ "learning_rate": 7.688897533194424e-05,
1919
+ "loss": 0.6445,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 2.341880341880342,
1924
+ "grad_norm": 0.6348976492881775,
1925
+ "learning_rate": 7.622215699028196e-05,
1926
+ "loss": 0.5257,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 2.3504273504273505,
1931
+ "grad_norm": 0.4737604260444641,
1932
+ "learning_rate": 7.555645741534736e-05,
1933
+ "loss": 0.4532,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 2.358974358974359,
1938
+ "grad_norm": 0.6055320501327515,
1939
+ "learning_rate": 7.489190792884338e-05,
1940
+ "loss": 1.0912,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 2.3675213675213675,
1945
+ "grad_norm": 0.6330887079238892,
1946
+ "learning_rate": 7.422853979836034e-05,
1947
+ "loss": 0.8996,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 2.376068376068376,
1952
+ "grad_norm": 0.5483549237251282,
1953
+ "learning_rate": 7.356638423590485e-05,
1954
+ "loss": 0.6033,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 2.3846153846153846,
1959
+ "grad_norm": 0.5688058733940125,
1960
+ "learning_rate": 7.290547239643117e-05,
1961
+ "loss": 0.5904,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 2.393162393162393,
1966
+ "grad_norm": 0.49569448828697205,
1967
+ "learning_rate": 7.224583537637544e-05,
1968
+ "loss": 0.6198,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 2.4017094017094016,
1973
+ "grad_norm": 0.5610498189926147,
1974
+ "learning_rate": 7.158750421219244e-05,
1975
+ "loss": 1.2213,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 2.41025641025641,
1980
+ "grad_norm": 0.5684900283813477,
1981
+ "learning_rate": 7.093050987889547e-05,
1982
+ "loss": 0.5249,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 2.4188034188034186,
1987
+ "grad_norm": 0.5226355195045471,
1988
+ "learning_rate": 7.027488328859876e-05,
1989
+ "loss": 0.4525,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 2.427350427350427,
1994
+ "grad_norm": 0.4944767653942108,
1995
+ "learning_rate": 6.96206552890632e-05,
1996
+ "loss": 0.5517,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 2.435897435897436,
2001
+ "grad_norm": 0.5820432305335999,
2002
+ "learning_rate": 6.896785666224481e-05,
2003
+ "loss": 0.5575,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 2.4444444444444446,
2008
+ "grad_norm": 0.6503978967666626,
2009
+ "learning_rate": 6.831651812284652e-05,
2010
+ "loss": 0.5344,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 2.452991452991453,
2015
+ "grad_norm": 0.5511913299560547,
2016
+ "learning_rate": 6.766667031687286e-05,
2017
+ "loss": 0.6221,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 2.4615384615384617,
2022
+ "grad_norm": 0.5843252539634705,
2023
+ "learning_rate": 6.701834382018832e-05,
2024
+ "loss": 0.5421,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 2.47008547008547,
2029
+ "grad_norm": 0.5561351180076599,
2030
+ "learning_rate": 6.637156913707839e-05,
2031
+ "loss": 0.4725,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 2.4786324786324787,
2036
+ "grad_norm": 0.5449361205101013,
2037
+ "learning_rate": 6.572637669881458e-05,
2038
+ "loss": 0.5561,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 2.4871794871794872,
2043
+ "grad_norm": 0.5354922413825989,
2044
+ "learning_rate": 6.508279686222243e-05,
2045
+ "loss": 1.0458,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 2.4957264957264957,
2050
+ "grad_norm": 0.6082772612571716,
2051
+ "learning_rate": 6.444085990825338e-05,
2052
+ "loss": 0.6117,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 2.5042735042735043,
2057
+ "grad_norm": 0.5007249712944031,
2058
+ "learning_rate": 6.380059604055974e-05,
2059
+ "loss": 0.4964,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 2.5128205128205128,
2064
+ "grad_norm": 0.728626549243927,
2065
+ "learning_rate": 6.316203538407397e-05,
2066
+ "loss": 0.7009,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 2.5213675213675213,
2071
+ "grad_norm": 0.5644152760505676,
2072
+ "learning_rate": 6.252520798359092e-05,
2073
+ "loss": 0.5498,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 2.52991452991453,
2078
+ "grad_norm": 0.5440083742141724,
2079
+ "learning_rate": 6.18901438023543e-05,
2080
+ "loss": 0.4946,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 2.5384615384615383,
2085
+ "grad_norm": 0.5415129661560059,
2086
+ "learning_rate": 6.125687272064713e-05,
2087
+ "loss": 0.5534,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 2.547008547008547,
2092
+ "grad_norm": 0.457343727350235,
2093
+ "learning_rate": 6.0625424534385425e-05,
2094
+ "loss": 0.6737,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 2.5555555555555554,
2099
+ "grad_norm": 0.6592293977737427,
2100
+ "learning_rate": 5.9995828953716695e-05,
2101
+ "loss": 0.64,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 2.564102564102564,
2106
+ "grad_norm": 0.591465413570404,
2107
+ "learning_rate": 5.936811560162169e-05,
2108
+ "loss": 0.5807,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 2.5726495726495724,
2113
+ "grad_norm": 0.5375930666923523,
2114
+ "learning_rate": 5.87423140125209e-05,
2115
+ "loss": 0.4945,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 2.5811965811965814,
2120
+ "grad_norm": 0.5260182619094849,
2121
+ "learning_rate": 5.811845363088477e-05,
2122
+ "loss": 0.4258,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 2.58974358974359,
2127
+ "grad_norm": 0.6136443614959717,
2128
+ "learning_rate": 5.749656380984844e-05,
2129
+ "loss": 0.5744,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 2.5982905982905984,
2134
+ "grad_norm": 0.6215261220932007,
2135
+ "learning_rate": 5.687667380983037e-05,
2136
+ "loss": 0.4933,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 2.606837606837607,
2141
+ "grad_norm": 0.5154852867126465,
2142
+ "learning_rate": 5.625881279715615e-05,
2143
+ "loss": 0.4296,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 2.6153846153846154,
2148
+ "grad_norm": 0.5293765664100647,
2149
+ "learning_rate": 5.5643009842685554e-05,
2150
+ "loss": 1.0884,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 2.623931623931624,
2155
+ "grad_norm": 0.5633432269096375,
2156
+ "learning_rate": 5.502929392044528e-05,
2157
+ "loss": 0.5541,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 2.6324786324786325,
2162
+ "grad_norm": 0.590496301651001,
2163
+ "learning_rate": 5.4417693906265365e-05,
2164
+ "loss": 0.4662,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 2.641025641025641,
2169
+ "grad_norm": 0.6000109910964966,
2170
+ "learning_rate": 5.380823857642069e-05,
2171
+ "loss": 0.5581,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 2.6495726495726495,
2176
+ "grad_norm": 0.5975021719932556,
2177
+ "learning_rate": 5.3200956606277006e-05,
2178
+ "loss": 0.861,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 2.658119658119658,
2183
+ "grad_norm": 0.5424284934997559,
2184
+ "learning_rate": 5.259587656894174e-05,
2185
+ "loss": 0.5272,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 2.6666666666666665,
2190
+ "grad_norm": 0.6322450041770935,
2191
+ "learning_rate": 5.199302693391959e-05,
2192
+ "loss": 0.6545,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 2.6752136752136755,
2197
+ "grad_norm": 0.9423356652259827,
2198
+ "learning_rate": 5.139243606577302e-05,
2199
+ "loss": 0.8078,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 2.683760683760684,
2204
+ "grad_norm": 0.6575957536697388,
2205
+ "learning_rate": 5.0794132222787707e-05,
2206
+ "loss": 0.5547,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 2.6923076923076925,
2211
+ "grad_norm": 0.6143584251403809,
2212
+ "learning_rate": 5.019814355564292e-05,
2213
+ "loss": 0.5707,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 2.700854700854701,
2218
+ "grad_norm": 0.5541775822639465,
2219
+ "learning_rate": 4.960449810608705e-05,
2220
+ "loss": 0.7209,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 2.7094017094017095,
2225
+ "grad_norm": 0.5190094113349915,
2226
+ "learning_rate": 4.90132238056182e-05,
2227
+ "loss": 0.5075,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 2.717948717948718,
2232
+ "grad_norm": 0.5351387858390808,
2233
+ "learning_rate": 4.8424348474170014e-05,
2234
+ "loss": 1.1994,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 2.7264957264957266,
2239
+ "grad_norm": 0.64601731300354,
2240
+ "learning_rate": 4.783789981880267e-05,
2241
+ "loss": 0.5779,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 2.735042735042735,
2246
+ "grad_norm": 0.46943098306655884,
2247
+ "learning_rate": 4.725390543239929e-05,
2248
+ "loss": 0.4131,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 2.7435897435897436,
2253
+ "grad_norm": 0.5379695296287537,
2254
+ "learning_rate": 4.667239279236768e-05,
2255
+ "loss": 0.6601,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 2.752136752136752,
2260
+ "grad_norm": 0.599001407623291,
2261
+ "learning_rate": 4.609338925934743e-05,
2262
+ "loss": 0.5375,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 2.7606837606837606,
2267
+ "grad_norm": 0.5188902616500854,
2268
+ "learning_rate": 4.551692207592265e-05,
2269
+ "loss": 0.9628,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 2.769230769230769,
2274
+ "grad_norm": 0.5495883226394653,
2275
+ "learning_rate": 4.494301836534016e-05,
2276
+ "loss": 0.5334,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 2.7777777777777777,
2281
+ "grad_norm": 0.6632270216941833,
2282
+ "learning_rate": 4.4371705130233275e-05,
2283
+ "loss": 0.5572,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 2.786324786324786,
2288
+ "grad_norm": 0.5476614236831665,
2289
+ "learning_rate": 4.380300925135138e-05,
2290
+ "loss": 0.4915,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 2.7948717948717947,
2295
+ "grad_norm": 0.5509811043739319,
2296
+ "learning_rate": 4.3236957486295115e-05,
2297
+ "loss": 1.2116,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 2.8034188034188032,
2302
+ "grad_norm": 0.4459514617919922,
2303
+ "learning_rate": 4.267357646825746e-05,
2304
+ "loss": 1.3973,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 2.8119658119658117,
2309
+ "grad_norm": 0.5664827823638916,
2310
+ "learning_rate": 4.211289270477047e-05,
2311
+ "loss": 0.5076,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 2.8205128205128203,
2316
+ "grad_norm": 0.5930613875389099,
2317
+ "learning_rate": 4.1554932576458415e-05,
2318
+ "loss": 0.5522,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 2.8290598290598292,
2323
+ "grad_norm": 0.5950198769569397,
2324
+ "learning_rate": 4.0999722335796075e-05,
2325
+ "loss": 1.1402,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 2.8376068376068377,
2330
+ "grad_norm": 0.5899688601493835,
2331
+ "learning_rate": 4.044728810587406e-05,
2332
+ "loss": 0.5293,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 2.8461538461538463,
2337
+ "grad_norm": 0.6274430751800537,
2338
+ "learning_rate": 3.989765587916914e-05,
2339
+ "loss": 0.4995,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 2.8547008547008548,
2344
+ "grad_norm": 0.5911152958869934,
2345
+ "learning_rate": 3.935085151632185e-05,
2346
+ "loss": 0.6738,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 2.8632478632478633,
2351
+ "grad_norm": 0.5615319013595581,
2352
+ "learning_rate": 3.8806900744919205e-05,
2353
+ "loss": 0.3968,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 2.871794871794872,
2358
+ "grad_norm": 0.5533549189567566,
2359
+ "learning_rate": 3.826582915828468e-05,
2360
+ "loss": 0.6669,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 2.8803418803418803,
2365
+ "grad_norm": 0.5834083557128906,
2366
+ "learning_rate": 3.7727662214273495e-05,
2367
+ "loss": 0.4875,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 2.888888888888889,
2372
+ "grad_norm": 0.4788981080055237,
2373
+ "learning_rate": 3.719242523407539e-05,
2374
+ "loss": 0.454,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 2.8974358974358974,
2379
+ "grad_norm": 0.49913716316223145,
2380
+ "learning_rate": 3.666014340102268e-05,
2381
+ "loss": 1.0155,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 2.905982905982906,
2386
+ "grad_norm": 0.5248069763183594,
2387
+ "learning_rate": 3.613084175940578e-05,
2388
+ "loss": 0.986,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 2.9145299145299144,
2393
+ "grad_norm": 0.5040814280509949,
2394
+ "learning_rate": 3.5604545213294616e-05,
2395
+ "loss": 0.9928,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 2.9230769230769234,
2400
+ "grad_norm": 0.538275420665741,
2401
+ "learning_rate": 3.508127852536698e-05,
2402
+ "loss": 0.8618,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 2.931623931623932,
2407
+ "grad_norm": 0.676364541053772,
2408
+ "learning_rate": 3.456106631574336e-05,
2409
+ "loss": 0.6912,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 2.9401709401709404,
2414
+ "grad_norm": 0.5177461504936218,
2415
+ "learning_rate": 3.4043933060828605e-05,
2416
+ "loss": 0.5507,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 2.948717948717949,
2421
+ "grad_norm": 0.5291532278060913,
2422
+ "learning_rate": 3.352990309216022e-05,
2423
+ "loss": 1.0143,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 2.9572649572649574,
2428
+ "grad_norm": 0.7094171047210693,
2429
+ "learning_rate": 3.3019000595263574e-05,
2430
+ "loss": 0.5838,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 2.965811965811966,
2435
+ "grad_norm": 0.5676212906837463,
2436
+ "learning_rate": 3.251124960851408e-05,
2437
+ "loss": 0.4447,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 2.9743589743589745,
2442
+ "grad_norm": 0.6674243211746216,
2443
+ "learning_rate": 3.200667402200586e-05,
2444
+ "loss": 0.6201,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 2.982905982905983,
2449
+ "grad_norm": 0.6357935070991516,
2450
+ "learning_rate": 3.1505297576428075e-05,
2451
+ "loss": 0.4907,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 2.9914529914529915,
2456
+ "grad_norm": 0.5493906736373901,
2457
+ "learning_rate": 3.100714386194757e-05,
2458
+ "loss": 0.5175,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 3.0,
2463
+ "grad_norm": 0.5719403028488159,
2464
+ "learning_rate": 3.0512236317099175e-05,
2465
+ "loss": 0.4602,
2466
+ "step": 351
2467
+ }
2468
+ ],
2469
+ "logging_steps": 1,
2470
+ "max_steps": 468,
2471
+ "num_input_tokens_seen": 0,
2472
+ "num_train_epochs": 4,
2473
+ "save_steps": 117,
2474
+ "stateful_callbacks": {
2475
+ "TrainerControl": {
2476
+ "args": {
2477
+ "should_epoch_stop": false,
2478
+ "should_evaluate": false,
2479
+ "should_log": false,
2480
+ "should_save": true,
2481
+ "should_training_stop": false
2482
+ },
2483
+ "attributes": {}
2484
+ }
2485
+ },
2486
+ "total_flos": 2.279504455265157e+17,
2487
+ "train_batch_size": 1,
2488
+ "trial_name": null,
2489
+ "trial_params": null
2490
+ }
checkpoint-351/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7fe3839cfcc5a93b060094e1030e134d680eeeb9bb2bdbde204831612dbb1c1
3
+ size 6840
checkpoint-468/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /cpool/DeepSeek-R1-Distill-Qwen-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-468/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/cpool/DeepSeek-R1-Distill-Qwen-7B",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "up_proj",
27
+ "k_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "v_proj",
31
+ "o_proj",
32
+ "q_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-468/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76b45071fea0cc56ec629a56bd69f7af8a8df37bfed0de5e375d9b49525015b3
3
+ size 2497283840
checkpoint-468/optimizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e7ee52aa632a2bd148886ab8c542b934c5936d5472dcaeae5f6cb9d47686bbc
3
+ size 646273514
checkpoint-468/pytorch_model_fsdp.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82c5a3a13aaca29276efce1e936eb5253f686afc0d4c48f4e504b127c7de0b42
3
+ size 323107814
checkpoint-468/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02a6427db4cfb85e415dca1e545df74f00e257dc04180cd01cec9dea981d96d4
3
+ size 14512
checkpoint-468/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:074fb102295cd998ffe03d4ace767f0b3387f94ba762aab5efd0168556f42f05
3
+ size 14512