File size: 2,263 Bytes
5d14aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper da-nst
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_1
      type: common_voice_16_1
      config: da
      split: test
      args: da
    metrics:
    - name: Wer
      type: wer
      value: 28.79345603271984
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper da-nst

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9046
- Wer: 28.7935

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0092        | 4.02  | 1000 | 0.8223          | 32.0654 |
| 0.0039        | 9.01  | 2000 | 0.8388          | 30.5203 |
| 0.0001        | 13.02 | 3000 | 0.8310          | 29.4479 |
| 0.0           | 18.01 | 4000 | 0.8598          | 28.9571 |
| 0.0           | 23.0  | 5000 | 0.8776          | 28.9162 |
| 0.0           | 27.02 | 6000 | 0.8911          | 28.9162 |
| 0.0           | 32.01 | 7000 | 0.9006          | 28.8298 |
| 0.0           | 36.03 | 8000 | 0.9046          | 28.7935 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1