File size: 9,119 Bytes
ab47f5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a53bb
ab47f5a
 
 
 
 
 
 
 
47bb4a8
ab47f5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aafada6
ab47f5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d5ac5
8332a70
 
 
 
ab47f5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef8d85
ab47f5a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

from dataclasses import dataclass
from typing import Optional, List, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers import Gemma2Model, Gemma2PreTrainedModel, Gemma2ForSequenceClassification, Gemma2Config
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
from transformers.utils import ModelOutput
from transformers.utils import add_start_docstrings_to_model_forward

import numpy as np
from os.path import join as pjoin


class GatingNetwork(nn.Module):
    """
    Gating Network: A simple MLP with softmax output and temperature scaling
    This network learns to combine multiple reward objectives based on the input context
    """
    def __init__(
        self,
        in_features: int,
        out_features: int,
        bias: bool = True,
        temperature: float = 10,
        logit_scale: float = 1.0,
        hidden_dim: int = 1024,
        n_hidden: int = 3,
        dropout: float = 0.2,
    ):
        super().__init__()
        self.temperature = temperature
        self.logit_scale = nn.Parameter(torch.ones(1) * logit_scale)
        layers = []
        dropout_rate = dropout
        for i in range(n_hidden):
            layers.append(nn.Linear(in_features, hidden_dim, bias=False)) # for BN
            #nn.init.kaiming_normal_(layers[-1].weight, mode='fan_in', nonlinearity='relu')
            layers.append(nn.ReLU())
            layers.append(nn.BatchNorm1d(hidden_dim))
            if dropout_rate > 0 and i < n_hidden - 1: # no dropout before last layer for more stability and precision
                layers.append(nn.Dropout(dropout_rate))

            in_features = hidden_dim
        layers.append(nn.Linear(in_features, out_features, bias=bias))
        self.layers = nn.ModuleList(layers)
        # print("Gating network layers:", self.layers)

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        orig_shape = x.shape
        x = x.reshape((-1, x.shape[-1]))
        for i, layer in enumerate(self.layers):
            x = layer(x)
        x = F.softmax(x / self.temperature, dim=1)
        x = x.reshape([s for s in orig_shape[:-1]] + [x.shape[-1]])
        return x * self.logit_scale

# Gemma2 token IDs of "<end_of_turn>\n<start_of_turn>model\n"
token_pattern = [107, 108, 106, 2516, 108]

def find_token_for_gating(lst, ):
    """Find the last occurrence of a token_pattern in a list."""
    token_pattern_len = len(token_pattern)
    search_end = len(lst)
    for j in range(search_end - token_pattern_len, -1, -1):
        if lst[j:j + token_pattern_len] == token_pattern:
            return j
    raise ValueError("Token pattern not found in the list.")


@dataclass
class CustomOutput(ModelOutput):
    """
    Base class for outputs of sentence classification models.

    Args:
        hidden_state (`Tuple[torch.FloatTensor]` of length `config.num_hidden_layers`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        prompt_embedding (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            The embeddings of the prompt tokens.
        gating_output (`torch.FloatTensor` of shape `(batch_size, config.num_objectives)`):
            The logits for the gating network.
        score (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            The final reward score.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Same as score
    """

    reward_quantiles: torch.FloatTensor = None
    rewards: torch.FloatTensor = None
    gating_output: Optional[torch.FloatTensor] = None
    score: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None


class Gemma2ForQuantileSequenceClassification(Gemma2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = Gemma2Model(config)
        # self.model = Gemma2Model(config).to(torch.bfloat16)
        config_dict = config.to_dict()
        self.num_objectives = config_dict.get("num_objectives", 5)
        self.num_quantiles = config_dict.get("num_quantiles", 19)
        self.quantiles = torch.linspace(0., 1., self.num_quantiles + 2)[1:-1]
        self.regression_layer = nn.Linear(config.hidden_size, self.num_quantiles * self.num_objectives, bias=False)
        self.post_init()

        num_objectives = 5

        # Initialize weights and apply final processing
        self.gating = GatingNetwork(config.hidden_size, self.num_objectives,
                                    temperature=config_dict.get("gating_temperature", 1),
                                    hidden_dim=config_dict.get("gating_hidden_dim", 1024),
                                    n_hidden=config_dict.get("gating_n_hidden", 3))


    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CustomOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if input_ids.shape[0] == 1 and len(input_ids.shape) == 2 and input_ids[0,0] == input_ids[0,1] == 2:
             input_ids = input_ids[:, 1:]
             if attention_mask is not None:
                 attention_mask = attention_mask[:, 1:]
                 
        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(hidden_states.device)
            else:
                sequence_lengths = -1

        dummy_iterator = torch.arange(batch_size, device=hidden_states.device)
        last_hidden_states = hidden_states[dummy_iterator, sequence_lengths]
        assert last_hidden_states.shape == (batch_size, self.config.hidden_size)
        rewards = self.regression_layer(last_hidden_states)
        rewards = rewards.reshape(-1, self.num_objectives, self.num_quantiles)

        gating_token_positions = [find_token_for_gating(ids.tolist()) for ids in input_ids]
        prompt_embedding = hidden_states[dummy_iterator, gating_token_positions, :]
        gating_output = self.gating(prompt_embedding)

        # [B, num_objectives, num_quantiles, ]
        reward_quantiles = torch.mean(
            rewards * gating_output.unsqueeze(-1).repeat(1, 1, self.num_quantiles), dim=1)

        rewards_expectation = rewards.mean(dim=2)
        score = torch.sum(rewards_expectation.float() * gating_output.float(), dim=-1, keepdim=True)

        return CustomOutput(
            reward_quantiles=reward_quantiles,
            rewards=rewards_expectation,
            gating_output=gating_output,
            score=score,
            logits=score,
        )