--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-clinc_oos-distilled-clinc_oos results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9158064516129032 --- # bert-base-uncased-finetuned-clinc_oos-distilled-clinc_oos This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7724 - Accuracy: 0.9158 ## Model Training Details | Parameter | Value | |----------------------|--------------------------------------------------| | **Task** | text-classification | | **Teacher Model** | bert-base-uncased-finetuned-clinc_oos | | **Student Model** | distilbert-base-uncased | | **Dataset Name** | clinc_oos | | **Dataset Config** | plus | | **Evaluation Dataset**| validation | | **Batch Size** | 48 | | **Number of Epochs** | 5 | | **Learning Rate** | 0.00002 | | **Alpha*** | 1 | *alpha: (Total_loss = alpha * Loss_CE + (1-alpha) * Loss_KD) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2762 | 0.7284 | | 3.7824 | 2.0 | 636 | 1.8624 | 0.8358 | | 3.7824 | 3.0 | 954 | 1.1512 | 0.8984 | | 1.6858 | 4.0 | 1272 | 0.8540 | 0.9132 | | 0.8983 | 5.0 | 1590 | 0.7724 | 0.9158 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3