Model save
Browse files- README.md +79 -0
- adapter_model.safetensors +1 -1
- results.json +4 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: microsoft/Phi-3-mini-128k-instruct
|
9 |
+
datasets:
|
10 |
+
- generator
|
11 |
+
metrics:
|
12 |
+
- bleu
|
13 |
+
- rouge
|
14 |
+
model-index:
|
15 |
+
- name: Phi-3-mini-128k-instruct-advisegpt-v0.2
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# Phi-3-mini-128k-instruct-advisegpt-v0.2
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the generator dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 1.8935
|
27 |
+
- Bleu: {'bleu': 0.26234942453828036, 'precisions': [0.6386386439809577, 0.32210746013057906, 0.19439435894133555, 0.13267612303321208], 'brevity_penalty': 0.9720688221242278, 'length_ratio': 0.9724517334440523, 'translation_length': 187372, 'reference_length': 192680}
|
28 |
+
- Rouge: {'rouge1': 0.6264335677482978, 'rouge2': 0.303034334791063, 'rougeL': 0.5025911195619426, 'rougeLsum': 0.5017835431871924}
|
29 |
+
- Exact Match: {'exact_match': 0.0}
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 5
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 12
|
53 |
+
- total_train_batch_size: 60
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- num_epochs: 8
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Exact Match |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------:|:--------------------:|
|
63 |
+
| 1.0263 | 0.9930 | 71 | 1.8935 | {'bleu': 0.26234942453828036, 'precisions': [0.6386386439809577, 0.32210746013057906, 0.19439435894133555, 0.13267612303321208], 'brevity_penalty': 0.9720688221242278, 'length_ratio': 0.9724517334440523, 'translation_length': 187372, 'reference_length': 192680} | {'rouge1': 0.6264335677482978, 'rouge2': 0.303034334791063, 'rougeL': 0.5025911195619426, 'rougeLsum': 0.5017835431871924} | {'exact_match': 0.0} |
|
64 |
+
| 0.7406 | 2.0 | 143 | 2.0190 | {'bleu': 0.2316346526053078, 'precisions': [0.6194236274162941, 0.28977498736790047, 0.16667026013087397, 0.10975622939300578], 'brevity_penalty': 0.9676527647784504, 'length_ratio': 0.9681648328835375, 'translation_length': 186546, 'reference_length': 192680} | {'rouge1': 0.6036218396315156, 'rouge2': 0.2682122181745471, 'rougeL': 0.47708940409367784, 'rougeLsum': 0.4770613490668666} | {'exact_match': 0.0} |
|
65 |
+
| 0.5882 | 2.9930 | 214 | 2.0681 | {'bleu': 0.22838404823316763, 'precisions': [0.6165055539838692, 0.2855842981089862, 0.1628873061791873, 0.10631461677977687], 'brevity_penalty': 0.9719140991086993, 'length_ratio': 0.9723012248287316, 'translation_length': 187343, 'reference_length': 192680} | {'rouge1': 0.6006461234391669, 'rouge2': 0.2637867501761157, 'rougeL': 0.4734228347835384, 'rougeLsum': 0.4732165944934509} | {'exact_match': 0.0} |
|
66 |
+
| 0.5344 | 4.0 | 286 | 2.0990 | {'bleu': 0.23243181277634892, 'precisions': [0.6183425166820463, 0.290359158131201, 0.16708232101387482, 0.10871728128815054], 'brevity_penalty': 0.9726288315430208, 'length_ratio': 0.9729966784305585, 'translation_length': 187477, 'reference_length': 192680} | {'rouge1': 0.6020165553663895, 'rouge2': 0.2689980360965313, 'rougeL': 0.4761211517574821, 'rougeLsum': 0.476013109131896} | {'exact_match': 0.0} |
|
67 |
+
| 0.491 | 4.9930 | 357 | 2.1029 | {'bleu': 0.23217356305609613, 'precisions': [0.6182632097844334, 0.28982060887176503, 0.16651395073437608, 0.1084203343202102], 'brevity_penalty': 0.9735242125771166, 'length_ratio': 0.9738685904089682, 'translation_length': 187645, 'reference_length': 192680} | {'rouge1': 0.602022171746183, 'rouge2': 0.2678457021558207, 'rougeL': 0.4757373660712696, 'rougeLsum': 0.4756766948490637} | {'exact_match': 0.0} |
|
68 |
+
| 0.4804 | 6.0 | 429 | 2.1066 | {'bleu': 0.22688560402307306, 'precisions': [0.6157982530470419, 0.2836332155892459, 0.16120717833852222, 0.10478493323661374], 'brevity_penalty': 0.9735029030458111, 'length_ratio': 0.9738478305999585, 'translation_length': 187641, 'reference_length': 192680} | {'rouge1': 0.5997469653277846, 'rouge2': 0.2615884826579755, 'rougeL': 0.4719633878547087, 'rougeLsum': 0.4719354595076038} | {'exact_match': 0.0} |
|
69 |
+
| 0.4667 | 6.9930 | 500 | 2.1083 | {'bleu': 0.2278015535859749, 'precisions': [0.6163871882176788, 0.28446401188294446, 0.1620224273628829, 0.10547183495849786], 'brevity_penalty': 0.9736627137558076, 'length_ratio': 0.9740035291675316, 'translation_length': 187671, 'reference_length': 192680} | {'rouge1': 0.6005116792432119, 'rouge2': 0.26230752315350514, 'rougeL': 0.47195529453152857, 'rougeLsum': 0.47187802968758125} | {'exact_match': 0.0} |
|
70 |
+
| 0.4827 | 7.9441 | 568 | 2.1093 | {'bleu': 0.2279193811355966, 'precisions': [0.6163472757204277, 0.2845680034617419, 0.16225351810881897, 0.10543872371283539], 'brevity_penalty': 0.9738224996031655, 'length_ratio': 0.9741592277351049, 'translation_length': 187701, 'reference_length': 192680} | {'rouge1': 0.6005721411221121, 'rouge2': 0.2625293432287747, 'rougeL': 0.4722072250908843, 'rougeLsum': 0.472187239051013} | {'exact_match': 0.0} |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- PEFT 0.10.0
|
76 |
+
- Transformers 4.40.1
|
77 |
+
- Pytorch 2.3.0+cu121
|
78 |
+
- Datasets 2.19.0
|
79 |
+
- Tokenizers 0.19.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 545621264
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b51daf2593a428d8069acda964296c2272e473251c5000e24e3c75dbf0626a77
|
3 |
size 545621264
|
results.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pre-training results:
|
2 |
+
{"eval_loss": 4.0594482421875, "eval_bleu": {"bleu": 0.1826898245158488, "precisions": [0.5573254531286369, 0.22778189271183172, 0.119520655944497, 0.07341526849915855], "brevity_penalty": 1.0, "length_ratio": 1.0256695038405648, "translation_length": 197626, "reference_length": 192680}, "eval_rouge": {"rouge1": 0.5620978339462965, "rouge2": 0.21928124564678209, "rougeL": 0.4200989137725146, "rougeLsum": 0.4164644643467429}, "eval_exact_match": {"exact_match": 0.0}, "eval_runtime": 95.4065, "eval_samples_per_second": 5.367, "eval_steps_per_second": 1.342}
|
3 |
+
Post-training results:
|
4 |
+
{"eval_loss": 1.8935281038284302, "eval_bleu": {"bleu": 0.26234942453828036, "precisions": [0.6386386439809577, 0.32210746013057906, 0.19439435894133555, 0.13267612303321208], "brevity_penalty": 0.9720688221242278, "length_ratio": 0.9724517334440523, "translation_length": 187372, "reference_length": 192680}, "eval_rouge": {"rouge1": 0.6264335677482978, "rouge2": 0.303034334791063, "rougeL": 0.5025911195619426, "rougeLsum": 0.5017835431871924}, "eval_exact_match": {"exact_match": 0.0}, "eval_runtime": 94.9049, "eval_samples_per_second": 5.395, "eval_steps_per_second": 1.349, "epoch": 7.944055944055944}
|