ninyx commited on
Commit
8066219
·
verified ·
1 Parent(s): 620d956

Model save

Browse files
Files changed (3) hide show
  1. README.md +79 -0
  2. adapter_model.safetensors +1 -1
  3. results.json +4 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: microsoft/Phi-3-mini-128k-instruct
9
+ datasets:
10
+ - generator
11
+ metrics:
12
+ - bleu
13
+ - rouge
14
+ model-index:
15
+ - name: Phi-3-mini-128k-instruct-advisegpt-v0.2
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # Phi-3-mini-128k-instruct-advisegpt-v0.2
23
+
24
+ This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the generator dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 1.8935
27
+ - Bleu: {'bleu': 0.26234942453828036, 'precisions': [0.6386386439809577, 0.32210746013057906, 0.19439435894133555, 0.13267612303321208], 'brevity_penalty': 0.9720688221242278, 'length_ratio': 0.9724517334440523, 'translation_length': 187372, 'reference_length': 192680}
28
+ - Rouge: {'rouge1': 0.6264335677482978, 'rouge2': 0.303034334791063, 'rougeL': 0.5025911195619426, 'rougeLsum': 0.5017835431871924}
29
+ - Exact Match: {'exact_match': 0.0}
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 5
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 12
53
+ - total_train_batch_size: 60
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - num_epochs: 8
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Exact Match |
62
+ |:-------------:|:------:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------:|:--------------------:|
63
+ | 1.0263 | 0.9930 | 71 | 1.8935 | {'bleu': 0.26234942453828036, 'precisions': [0.6386386439809577, 0.32210746013057906, 0.19439435894133555, 0.13267612303321208], 'brevity_penalty': 0.9720688221242278, 'length_ratio': 0.9724517334440523, 'translation_length': 187372, 'reference_length': 192680} | {'rouge1': 0.6264335677482978, 'rouge2': 0.303034334791063, 'rougeL': 0.5025911195619426, 'rougeLsum': 0.5017835431871924} | {'exact_match': 0.0} |
64
+ | 0.7406 | 2.0 | 143 | 2.0190 | {'bleu': 0.2316346526053078, 'precisions': [0.6194236274162941, 0.28977498736790047, 0.16667026013087397, 0.10975622939300578], 'brevity_penalty': 0.9676527647784504, 'length_ratio': 0.9681648328835375, 'translation_length': 186546, 'reference_length': 192680} | {'rouge1': 0.6036218396315156, 'rouge2': 0.2682122181745471, 'rougeL': 0.47708940409367784, 'rougeLsum': 0.4770613490668666} | {'exact_match': 0.0} |
65
+ | 0.5882 | 2.9930 | 214 | 2.0681 | {'bleu': 0.22838404823316763, 'precisions': [0.6165055539838692, 0.2855842981089862, 0.1628873061791873, 0.10631461677977687], 'brevity_penalty': 0.9719140991086993, 'length_ratio': 0.9723012248287316, 'translation_length': 187343, 'reference_length': 192680} | {'rouge1': 0.6006461234391669, 'rouge2': 0.2637867501761157, 'rougeL': 0.4734228347835384, 'rougeLsum': 0.4732165944934509} | {'exact_match': 0.0} |
66
+ | 0.5344 | 4.0 | 286 | 2.0990 | {'bleu': 0.23243181277634892, 'precisions': [0.6183425166820463, 0.290359158131201, 0.16708232101387482, 0.10871728128815054], 'brevity_penalty': 0.9726288315430208, 'length_ratio': 0.9729966784305585, 'translation_length': 187477, 'reference_length': 192680} | {'rouge1': 0.6020165553663895, 'rouge2': 0.2689980360965313, 'rougeL': 0.4761211517574821, 'rougeLsum': 0.476013109131896} | {'exact_match': 0.0} |
67
+ | 0.491 | 4.9930 | 357 | 2.1029 | {'bleu': 0.23217356305609613, 'precisions': [0.6182632097844334, 0.28982060887176503, 0.16651395073437608, 0.1084203343202102], 'brevity_penalty': 0.9735242125771166, 'length_ratio': 0.9738685904089682, 'translation_length': 187645, 'reference_length': 192680} | {'rouge1': 0.602022171746183, 'rouge2': 0.2678457021558207, 'rougeL': 0.4757373660712696, 'rougeLsum': 0.4756766948490637} | {'exact_match': 0.0} |
68
+ | 0.4804 | 6.0 | 429 | 2.1066 | {'bleu': 0.22688560402307306, 'precisions': [0.6157982530470419, 0.2836332155892459, 0.16120717833852222, 0.10478493323661374], 'brevity_penalty': 0.9735029030458111, 'length_ratio': 0.9738478305999585, 'translation_length': 187641, 'reference_length': 192680} | {'rouge1': 0.5997469653277846, 'rouge2': 0.2615884826579755, 'rougeL': 0.4719633878547087, 'rougeLsum': 0.4719354595076038} | {'exact_match': 0.0} |
69
+ | 0.4667 | 6.9930 | 500 | 2.1083 | {'bleu': 0.2278015535859749, 'precisions': [0.6163871882176788, 0.28446401188294446, 0.1620224273628829, 0.10547183495849786], 'brevity_penalty': 0.9736627137558076, 'length_ratio': 0.9740035291675316, 'translation_length': 187671, 'reference_length': 192680} | {'rouge1': 0.6005116792432119, 'rouge2': 0.26230752315350514, 'rougeL': 0.47195529453152857, 'rougeLsum': 0.47187802968758125} | {'exact_match': 0.0} |
70
+ | 0.4827 | 7.9441 | 568 | 2.1093 | {'bleu': 0.2279193811355966, 'precisions': [0.6163472757204277, 0.2845680034617419, 0.16225351810881897, 0.10543872371283539], 'brevity_penalty': 0.9738224996031655, 'length_ratio': 0.9741592277351049, 'translation_length': 187701, 'reference_length': 192680} | {'rouge1': 0.6005721411221121, 'rouge2': 0.2625293432287747, 'rougeL': 0.4722072250908843, 'rougeLsum': 0.472187239051013} | {'exact_match': 0.0} |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - PEFT 0.10.0
76
+ - Transformers 4.40.1
77
+ - Pytorch 2.3.0+cu121
78
+ - Datasets 2.19.0
79
+ - Tokenizers 0.19.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4cd995be8ebfad324bc30ff3d5ca7d7df1727db626f2281759ad40098a409ea5
3
  size 545621264
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b51daf2593a428d8069acda964296c2272e473251c5000e24e3c75dbf0626a77
3
  size 545621264
results.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Pre-training results:
2
+ {"eval_loss": 4.0594482421875, "eval_bleu": {"bleu": 0.1826898245158488, "precisions": [0.5573254531286369, 0.22778189271183172, 0.119520655944497, 0.07341526849915855], "brevity_penalty": 1.0, "length_ratio": 1.0256695038405648, "translation_length": 197626, "reference_length": 192680}, "eval_rouge": {"rouge1": 0.5620978339462965, "rouge2": 0.21928124564678209, "rougeL": 0.4200989137725146, "rougeLsum": 0.4164644643467429}, "eval_exact_match": {"exact_match": 0.0}, "eval_runtime": 95.4065, "eval_samples_per_second": 5.367, "eval_steps_per_second": 1.342}
3
+ Post-training results:
4
+ {"eval_loss": 1.8935281038284302, "eval_bleu": {"bleu": 0.26234942453828036, "precisions": [0.6386386439809577, 0.32210746013057906, 0.19439435894133555, 0.13267612303321208], "brevity_penalty": 0.9720688221242278, "length_ratio": 0.9724517334440523, "translation_length": 187372, "reference_length": 192680}, "eval_rouge": {"rouge1": 0.6264335677482978, "rouge2": 0.303034334791063, "rougeL": 0.5025911195619426, "rougeLsum": 0.5017835431871924}, "eval_exact_match": {"exact_match": 0.0}, "eval_runtime": 94.9049, "eval_samples_per_second": 5.395, "eval_steps_per_second": 1.349, "epoch": 7.944055944055944}