File size: 1,790 Bytes
98be65c
 
1594091
 
 
 
 
 
 
 
 
98be65c
 
1594091
 
98be65c
4d841ad
c4cc2d2
98be65c
1594091
 
98be65c
1594091
98be65c
1594091
 
acb2b66
1594091
98be65c
1594091
 
 
98be65c
1594091
 
98be65c
1594091
 
 
 
 
 
98be65c
1594091
98be65c
1594091
98be65c
1594091
 
98be65c
1594091
 
 
98be65c
1594091
 
 
98be65c
1594091
 
98be65c
1594091
 
 
 
98be65c
 
1594091
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
tags:
- code
- NextJS
language:
- en
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
base_model_relation: finetune
pipeline_tag: text-generation
---

# Model Information
The Qwen2.5-1.5B-NextJs-code is a quantized, fine-tuned version of the Qwen2.5-1.5B-Instruct model designed specifically for generating NextJs code.

- **Base model:** Qwen/Qwen2.5-1.5B-Instruct


# How to use
Starting with transformers version 4.44.0 and later, you can run conversational inference using the Transformers pipeline.

Make sure to update your transformers installation via pip install --upgrade transformers.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
```

```python
def get_pipline():
    model_name = "nirusanan/Qwen2.5-1.5B-NextJs-code"

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="cuda:0",
        trust_remote_code=True
    )

    pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=3500)

    return pipe

pipe = get_pipline()
```

```python
def generate_prompt(project_title, description):
    prompt = f"""Below is an instruction that describes a project. Write Nextjs 14 code to accomplish the project described below.

### Instruction:
Project:
{project_title}

Project Description:
{description}

### Response:
"""
    return prompt
```


```python
prompt = generate_prompt(project_title = "Your NextJs project", description = "Your NextJs project description")
result = pipe(prompt)
generated_text = result[0]['generated_text']
print(generated_text.split("### End")[0])
```