nisargvp commited on
Commit
db83e1e
1 Parent(s): 83b610c

End of training

Browse files
Files changed (1) hide show
  1. README.md +167 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: mistralai/Mistral-7B-v0.1
8
+ model-index:
9
+ - name: hc-mistral-alpaca
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ base_model: mistralai/Mistral-7B-v0.1
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_mistral_derived_model: true
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ lora_fan_in_fan_out: false
31
+ data_seed: 49
32
+ seed: 49
33
+
34
+ datasets:
35
+ - path: _synth_data/alpaca_synth_queries_healed.jsonl
36
+ type: sharegpt
37
+ conversation: alpaca
38
+ shards: 10 # This will divide the dataset into 10 shards
39
+ shards_idx: 2 # This will load only the 3rd shard (indexing starts from 0)
40
+ dataset_prepared_path: last_run_prepared
41
+ val_set_size: 0.1
42
+ output_dir: ./qlora-alpaca-out
43
+ hub_model_id: nisargvp/hc-mistral-alpaca
44
+
45
+ adapter: qlora
46
+ lora_model_dir:
47
+
48
+ sequence_len: 896
49
+ sample_packing: true
50
+ pad_to_sequence_len: true
51
+
52
+ lora_r: 32
53
+ lora_alpha: 16
54
+ lora_dropout: 0.05
55
+ lora_target_linear: true
56
+ lora_fan_in_fan_out:
57
+ lora_target_modules:
58
+ - gate_proj
59
+ - down_proj
60
+ - up_proj
61
+ - q_proj
62
+ - v_proj
63
+ - k_proj
64
+ - o_proj
65
+
66
+ wandb_project: hc-axolotl-mistral
67
+ wandb_entity: nisargvp
68
+
69
+ gradient_accumulation_steps: 4
70
+ micro_batch_size: 16
71
+ eval_batch_size: 16
72
+ num_epochs: 1
73
+ optimizer: adamw_bnb_8bit
74
+ lr_scheduler: cosine
75
+ learning_rate: 0.0002
76
+ max_grad_norm: 1.0
77
+ adam_beta2: 0.95
78
+ adam_epsilon: 0.00001
79
+ save_total_limit: 12
80
+
81
+ train_on_inputs: false
82
+ group_by_length: false
83
+ bf16: true
84
+ fp16: false
85
+ tf32: false
86
+
87
+ gradient_checkpointing: true
88
+ early_stopping_patience:
89
+ resume_from_checkpoint:
90
+ local_rank:
91
+ logging_steps: 1
92
+ xformers_attention:
93
+ flash_attention: true
94
+
95
+ loss_watchdog_threshold: 5.0
96
+ loss_watchdog_patience: 3
97
+
98
+ warmup_steps: 20
99
+ evals_per_epoch: 4
100
+ eval_table_size:
101
+ eval_table_max_new_tokens: 128
102
+ saves_per_epoch: 6
103
+ debug:
104
+ weight_decay: 0.0
105
+ fsdp:
106
+ fsdp_config:
107
+ special_tokens:
108
+ bos_token: "<s>"
109
+ eos_token: "</s>"
110
+ unk_token: "<unk>"
111
+ save_safetensors: true
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # hc-mistral-alpaca
118
+
119
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 0.1384
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 0.0002
141
+ - train_batch_size: 16
142
+ - eval_batch_size: 16
143
+ - seed: 49
144
+ - gradient_accumulation_steps: 4
145
+ - total_train_batch_size: 64
146
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 20
149
+ - num_epochs: 1
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 1.1477 | 0.0098 | 1 | 1.1538 |
156
+ | 0.1856 | 0.2537 | 26 | 0.1796 |
157
+ | 0.1554 | 0.5073 | 52 | 0.1488 |
158
+ | 0.1364 | 0.7610 | 78 | 0.1384 |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - PEFT 0.10.0
164
+ - Transformers 4.40.2
165
+ - Pytorch 2.1.2+cu118
166
+ - Datasets 2.19.1
167
+ - Tokenizers 0.19.1