--- license: creativeml-openrail-m --- **Mo Di Diffusion** This is the fine-tuned Stable Diffusion model trained on screenshots from the modern age Disney movies. Use the tokens **_modern disney style_** in your prompts for the effect. If you enjoy this model, please check out my other models on [Huggingface](https://huggingface.co/nitrosocke) **Videogame Characters rendered with the model:** ![Videogame Samples](https://huggingface.co/nitrosocke/mo-di-diffusion/resolve/main/modern-disfusion-samples-01s.jpg) **Animal Characters rendered with the model:** ![Animal Samples](https://huggingface.co/nitrosocke/mo-di-diffusion/resolve/main/modern-disfusion-samples-02s.jpg) **Cars and Landscapes rendered with the model:** ![Misc. Samples](https://huggingface.co/nitrosocke/mo-di-diffusion/resolve/main/modern-disfusion-samples-03s.jpg) ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "nitrosocke/mo-di-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a magical princess with golden hair, modern disney style" image = pipe(prompt).images[0] image.save("./magical_princess.png") ``` #### Prompt and settings for Lara Croft: **modern disney lara croft** _Steps: 50, Sampler: Euler a, CFG scale: 7, Seed: 3940025417, Size: 512x768_ #### Prompt and settings for Simba: **modern disney (baby simba) Negative prompt: person human** _Steps: 50, Sampler: Euler a, CFG scale: 7, Seed: 1355059992, Size: 512x512_ This model was trained using the diffusers based dreambooth training and prior-preservation loss in 9.000 steps and using the _train-text-encoder_ feature.