--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # nixie-suggest-small-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is based on E5-small-v2 model, fine-tuned for typical suggester-like workloads: * for a partial and noisy input of the query, it tries to minimize the cosine distance to the correct query * 'mil' should be close to 'milk' * model also prone to typical typos like letter drops/swaps/duplications. So 'mikl' is still close to 'milk'. * the model is asymmetrical (as the original E5), so you need to prepend your prefixes with 'query: ' and full queries with 'passage: ' ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["query: mil", "passage: milk"] model = SentenceTransformer('nixiesearch/nixie-suggest-small-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Training dataset The training dataset was syntetically generated from the following corpora: * top-100k most frequent English words, from Google N-Gram project: [https://github.com/hackerb9/gwordlist](https://github.com/hackerb9/gwordlist) * top-1M 2-grams and 3-grams from [MultiLex](https://analytics.huma-num.fr/popr-ngram/Multi-LEX/index.html#en-section) We did the following permutations to the original 1/2/3-grams: * letter swaps: milk-mikl * letter drops: milk-ilk * qwerty-aware replacements: milk-nilk * duplications: milk-miilk The original generation code is available on github: https://github.com/nixiesearch/autocomplete-playground ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 220359 with parameters: ``` {'batch_size': 2048, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 3000, "evaluator": "sentence_transformers.evaluation.RerankingEvaluator.RerankingEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 220358, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors