--- license: apache-2.0 base_model: openai/whisper-small.en tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-medical-speech-recognition-14-Sep-2023 results: [] --- # whisper-small-medical-speech-recognition-14-Sep-2023 This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Wer: 7.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3756 | 25.0 | 25 | 0.3675 | 26.2195 | | 0.017 | 50.0 | 50 | 0.2226 | 7.3171 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3