nkkbr commited on
Commit
6cc8163
1 Parent(s): 0d5c326

End of training

Browse files
Files changed (1) hide show
  1. README.md +86 -86
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Wer
25
  type: wer
26
- value: 100
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the NG_word_detect dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.2329
37
- - Wer: 100
38
 
39
  ## Model description
40
 
@@ -53,7 +53,7 @@ More information needed
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
- - learning_rate: 1e-05
57
  - train_batch_size: 32
58
  - eval_batch_size: 32
59
  - seed: 42
@@ -65,88 +65,88 @@ The following hyperparameters were used during training:
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Wer |
69
- |:-------------:|:-------:|:----:|:---------------:|:---:|
70
- | 0.3455 | 0.1524 | 25 | 0.3460 | 100 |
71
- | 0.2411 | 0.3049 | 50 | 0.2396 | 100 |
72
- | 0.2047 | 0.4573 | 75 | 0.1944 | 100 |
73
- | 0.201 | 0.6098 | 100 | 0.1769 | 100 |
74
- | 0.1357 | 0.7622 | 125 | 0.1721 | 100 |
75
- | 0.1925 | 0.9146 | 150 | 0.1750 | 100 |
76
- | 0.0955 | 1.0671 | 175 | 0.1778 | 100 |
77
- | 0.1212 | 1.2195 | 200 | 0.1805 | 100 |
78
- | 0.0966 | 1.3720 | 225 | 0.1790 | 100 |
79
- | 0.089 | 1.5244 | 250 | 0.1759 | 100 |
80
- | 0.0983 | 1.6768 | 275 | 0.1775 | 100 |
81
- | 0.1118 | 1.8293 | 300 | 0.1734 | 100 |
82
- | 0.1058 | 1.9817 | 325 | 0.1738 | 100 |
83
- | 0.0415 | 2.1341 | 350 | 0.1840 | 100 |
84
- | 0.0471 | 2.2866 | 375 | 0.1827 | 100 |
85
- | 0.0502 | 2.4390 | 400 | 0.1876 | 100 |
86
- | 0.0513 | 2.5915 | 425 | 0.1821 | 100 |
87
- | 0.0492 | 2.7439 | 450 | 0.1857 | 100 |
88
- | 0.0567 | 2.8963 | 475 | 0.1841 | 100 |
89
- | 0.0219 | 3.0488 | 500 | 0.1923 | 100 |
90
- | 0.0179 | 3.2012 | 525 | 0.1951 | 100 |
91
- | 0.0248 | 3.3537 | 550 | 0.2001 | 100 |
92
- | 0.0324 | 3.5061 | 575 | 0.1947 | 100 |
93
- | 0.0231 | 3.6585 | 600 | 0.1996 | 100 |
94
- | 0.0274 | 3.8110 | 625 | 0.1896 | 100 |
95
- | 0.0218 | 3.9634 | 650 | 0.1907 | 100 |
96
- | 0.0106 | 4.1159 | 675 | 0.2017 | 100 |
97
- | 0.0158 | 4.2683 | 700 | 0.2009 | 100 |
98
- | 0.0136 | 4.4207 | 725 | 0.1995 | 100 |
99
- | 0.0104 | 4.5732 | 750 | 0.1961 | 100 |
100
- | 0.0117 | 4.7256 | 775 | 0.1945 | 100 |
101
- | 0.0149 | 4.8780 | 800 | 0.1993 | 100 |
102
- | 0.0087 | 5.0305 | 825 | 0.2056 | 100 |
103
- | 0.0052 | 5.1829 | 850 | 0.2031 | 100 |
104
- | 0.0108 | 5.3354 | 875 | 0.2093 | 100 |
105
- | 0.013 | 5.4878 | 900 | 0.2115 | 100 |
106
- | 0.0048 | 5.6402 | 925 | 0.2045 | 100 |
107
- | 0.0089 | 5.7927 | 950 | 0.2167 | 100 |
108
- | 0.0034 | 5.9451 | 975 | 0.2016 | 100 |
109
- | 0.0082 | 6.0976 | 1000 | 0.2098 | 100 |
110
- | 0.0055 | 6.25 | 1025 | 0.2102 | 100 |
111
- | 0.0103 | 6.4024 | 1050 | 0.2140 | 100 |
112
- | 0.0072 | 6.5549 | 1075 | 0.2089 | 100 |
113
- | 0.0013 | 6.7073 | 1100 | 0.2076 | 100 |
114
- | 0.0077 | 6.8598 | 1125 | 0.2099 | 100 |
115
- | 0.0037 | 7.0122 | 1150 | 0.2121 | 100 |
116
- | 0.0008 | 7.1646 | 1175 | 0.2123 | 100 |
117
- | 0.0013 | 7.3171 | 1200 | 0.2137 | 100 |
118
- | 0.0018 | 7.4695 | 1225 | 0.2150 | 100 |
119
- | 0.0007 | 7.6220 | 1250 | 0.2186 | 100 |
120
- | 0.002 | 7.7744 | 1275 | 0.2169 | 100 |
121
- | 0.0017 | 7.9268 | 1300 | 0.2151 | 100 |
122
- | 0.0032 | 8.0793 | 1325 | 0.2167 | 100 |
123
- | 0.0004 | 8.2317 | 1350 | 0.2182 | 100 |
124
- | 0.0004 | 8.3841 | 1375 | 0.2210 | 100 |
125
- | 0.0003 | 8.5366 | 1400 | 0.2217 | 100 |
126
- | 0.0015 | 8.6890 | 1425 | 0.2226 | 100 |
127
- | 0.0003 | 8.8415 | 1450 | 0.2230 | 100 |
128
- | 0.0015 | 8.9939 | 1475 | 0.2281 | 100 |
129
- | 0.0003 | 9.1463 | 1500 | 0.2270 | 100 |
130
- | 0.0003 | 9.2988 | 1525 | 0.2284 | 100 |
131
- | 0.0004 | 9.4512 | 1550 | 0.2289 | 100 |
132
- | 0.0002 | 9.6037 | 1575 | 0.2290 | 100 |
133
- | 0.0009 | 9.7561 | 1600 | 0.2294 | 100 |
134
- | 0.0002 | 9.9085 | 1625 | 0.2297 | 100 |
135
- | 0.0006 | 10.0610 | 1650 | 0.2303 | 100 |
136
- | 0.0008 | 10.2134 | 1675 | 0.2308 | 100 |
137
- | 0.0002 | 10.3659 | 1700 | 0.2314 | 100 |
138
- | 0.0002 | 10.5183 | 1725 | 0.2311 | 100 |
139
- | 0.0002 | 10.6707 | 1750 | 0.2315 | 100 |
140
- | 0.0002 | 10.8232 | 1775 | 0.2317 | 100 |
141
- | 0.0002 | 10.9756 | 1800 | 0.2319 | 100 |
142
- | 0.0009 | 11.1280 | 1825 | 0.2323 | 100 |
143
- | 0.0002 | 11.2805 | 1850 | 0.2325 | 100 |
144
- | 0.0002 | 11.4329 | 1875 | 0.2326 | 100 |
145
- | 0.0005 | 11.5854 | 1900 | 0.2327 | 100 |
146
- | 0.0001 | 11.7378 | 1925 | 0.2328 | 100 |
147
- | 0.0002 | 11.8902 | 1950 | 0.2328 | 100 |
148
- | 0.0002 | 12.0427 | 1975 | 0.2329 | 100 |
149
- | 0.0002 | 12.1951 | 2000 | 0.2329 | 100 |
150
 
151
 
152
  ### Framework versions
 
23
  metrics:
24
  - name: Wer
25
  type: wer
26
+ value: 40.960240060015
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the NG_word_detect dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2154
37
+ - Wer: 40.9602
38
 
39
  ## Model description
40
 
 
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
+ - learning_rate: 5e-06
57
  - train_batch_size: 32
58
  - eval_batch_size: 32
59
  - seed: 42
 
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|
70
+ | 0.3435 | 0.1524 | 25 | 0.3604 | 69.1673 |
71
+ | 0.2776 | 0.3049 | 50 | 0.2718 | 63.0158 |
72
+ | 0.2031 | 0.4573 | 75 | 0.2177 | 55.4389 |
73
+ | 0.171 | 0.6098 | 100 | 0.1879 | 52.3631 |
74
+ | 0.1363 | 0.7622 | 125 | 0.1721 | 49.8875 |
75
+ | 0.1587 | 0.9146 | 150 | 0.1654 | 48.9872 |
76
+ | 0.0824 | 1.0671 | 175 | 0.1641 | 47.2618 |
77
+ | 0.0933 | 1.2195 | 200 | 0.1659 | 48.3121 |
78
+ | 0.1426 | 1.3720 | 225 | 0.1572 | 46.5116 |
79
+ | 0.1059 | 1.5244 | 250 | 0.1528 | 45.6864 |
80
+ | 0.095 | 1.6768 | 275 | 0.1540 | 46.0615 |
81
+ | 0.0855 | 1.8293 | 300 | 0.1528 | 44.1110 |
82
+ | 0.1124 | 1.9817 | 325 | 0.1525 | 45.1613 |
83
+ | 0.052 | 2.1341 | 350 | 0.1559 | 45.5364 |
84
+ | 0.0539 | 2.2866 | 375 | 0.1575 | 45.0863 |
85
+ | 0.0718 | 2.4390 | 400 | 0.1667 | 45.1613 |
86
+ | 0.0451 | 2.5915 | 425 | 0.1701 | 46.0615 |
87
+ | 0.0421 | 2.7439 | 450 | 0.1582 | 44.4861 |
88
+ | 0.0508 | 2.8963 | 475 | 0.1604 | 44.4111 |
89
+ | 0.0204 | 3.0488 | 500 | 0.1601 | 42.7607 |
90
+ | 0.0257 | 3.2012 | 525 | 0.1744 | 43.9610 |
91
+ | 0.0175 | 3.3537 | 550 | 0.1728 | 45.7614 |
92
+ | 0.0219 | 3.5061 | 575 | 0.1766 | 45.2363 |
93
+ | 0.0216 | 3.6585 | 600 | 0.1800 | 45.9115 |
94
+ | 0.0173 | 3.8110 | 625 | 0.1692 | 44.5611 |
95
+ | 0.0418 | 3.9634 | 650 | 0.1672 | 43.7359 |
96
+ | 0.0076 | 4.1159 | 675 | 0.1777 | 43.6609 |
97
+ | 0.0088 | 4.2683 | 700 | 0.1805 | 42.4606 |
98
+ | 0.0097 | 4.4207 | 725 | 0.1774 | 43.0608 |
99
+ | 0.0097 | 4.5732 | 750 | 0.1802 | 44.7112 |
100
+ | 0.0117 | 4.7256 | 775 | 0.1783 | 43.5859 |
101
+ | 0.0101 | 4.8780 | 800 | 0.1851 | 42.9107 |
102
+ | 0.0069 | 5.0305 | 825 | 0.1807 | 41.9355 |
103
+ | 0.006 | 5.1829 | 850 | 0.1865 | 42.2356 |
104
+ | 0.0029 | 5.3354 | 875 | 0.1878 | 42.6107 |
105
+ | 0.0079 | 5.4878 | 900 | 0.1994 | 44.1110 |
106
+ | 0.0118 | 5.6402 | 925 | 0.1889 | 43.9610 |
107
+ | 0.0125 | 5.7927 | 950 | 0.1905 | 44.6362 |
108
+ | 0.0115 | 5.9451 | 975 | 0.1846 | 44.0360 |
109
+ | 0.0054 | 6.0976 | 1000 | 0.1845 | 43.8110 |
110
+ | 0.0036 | 6.25 | 1025 | 0.1922 | 42.7607 |
111
+ | 0.0088 | 6.4024 | 1050 | 0.1937 | 42.8357 |
112
+ | 0.0043 | 6.5549 | 1075 | 0.1914 | 42.9107 |
113
+ | 0.0016 | 6.7073 | 1100 | 0.1958 | 42.6107 |
114
+ | 0.0103 | 6.8598 | 1125 | 0.1877 | 41.6354 |
115
+ | 0.0027 | 7.0122 | 1150 | 0.1873 | 41.7104 |
116
+ | 0.0018 | 7.1646 | 1175 | 0.1890 | 41.7854 |
117
+ | 0.0012 | 7.3171 | 1200 | 0.1918 | 41.7104 |
118
+ | 0.0054 | 7.4695 | 1225 | 0.1949 | 41.0353 |
119
+ | 0.0014 | 7.6220 | 1250 | 0.1965 | 41.6354 |
120
+ | 0.0009 | 7.7744 | 1275 | 0.2024 | 41.7104 |
121
+ | 0.0011 | 7.9268 | 1300 | 0.1970 | 41.1853 |
122
+ | 0.0007 | 8.0793 | 1325 | 0.1995 | 41.1103 |
123
+ | 0.0006 | 8.2317 | 1350 | 0.2012 | 41.4854 |
124
+ | 0.0006 | 8.3841 | 1375 | 0.2075 | 41.7854 |
125
+ | 0.0006 | 8.5366 | 1400 | 0.2077 | 41.5604 |
126
+ | 0.0034 | 8.6890 | 1425 | 0.2092 | 41.7854 |
127
+ | 0.0006 | 8.8415 | 1450 | 0.2079 | 41.2603 |
128
+ | 0.0023 | 8.9939 | 1475 | 0.2080 | 41.0353 |
129
+ | 0.0004 | 9.1463 | 1500 | 0.2095 | 41.0353 |
130
+ | 0.0021 | 9.2988 | 1525 | 0.2096 | 41.4854 |
131
+ | 0.0004 | 9.4512 | 1550 | 0.2095 | 41.3353 |
132
+ | 0.0015 | 9.6037 | 1575 | 0.2102 | 41.0353 |
133
+ | 0.0012 | 9.7561 | 1600 | 0.2106 | 41.1853 |
134
+ | 0.0006 | 9.9085 | 1625 | 0.2110 | 41.2603 |
135
+ | 0.0004 | 10.0610 | 1650 | 0.2111 | 41.1103 |
136
+ | 0.0003 | 10.2134 | 1675 | 0.2122 | 41.1853 |
137
+ | 0.0003 | 10.3659 | 1700 | 0.2122 | 40.9602 |
138
+ | 0.0006 | 10.5183 | 1725 | 0.2125 | 40.8102 |
139
+ | 0.0004 | 10.6707 | 1750 | 0.2131 | 40.8852 |
140
+ | 0.0004 | 10.8232 | 1775 | 0.2137 | 41.0353 |
141
+ | 0.0003 | 10.9756 | 1800 | 0.2141 | 40.9602 |
142
+ | 0.0003 | 11.1280 | 1825 | 0.2144 | 40.9602 |
143
+ | 0.0003 | 11.2805 | 1850 | 0.2147 | 40.9602 |
144
+ | 0.0021 | 11.4329 | 1875 | 0.2149 | 40.9602 |
145
+ | 0.0011 | 11.5854 | 1900 | 0.2152 | 40.9602 |
146
+ | 0.0003 | 11.7378 | 1925 | 0.2153 | 40.9602 |
147
+ | 0.0003 | 11.8902 | 1950 | 0.2153 | 40.9602 |
148
+ | 0.0024 | 12.0427 | 1975 | 0.2153 | 40.9602 |
149
+ | 0.0003 | 12.1951 | 2000 | 0.2154 | 40.9602 |
150
 
151
 
152
  ### Framework versions