Commit
·
f067fcd
1
Parent(s):
b309c4b
readme updated
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-captioning
|
4 |
+
license: apache-2.0
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# nlpconnect/vit-gpt2-image-captioning
|
9 |
+
|
10 |
+
This is an image captioning model training by @ydshieh in flax, this is pytorch version of https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts model.
|
11 |
+
|
12 |
+
|
13 |
+
# Sample running code
|
14 |
+
|
15 |
+
```python
|
16 |
+
|
17 |
+
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
18 |
+
|
19 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
20 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
22 |
+
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
model.to(device)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
max_length = 16
|
29 |
+
num_beams = 4
|
30 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
31 |
+
def predict_step(image_paths):
|
32 |
+
images = []
|
33 |
+
for image_path in image_paths:
|
34 |
+
i_image = Image.open(image_path)
|
35 |
+
if i_image.mode != "RGB":
|
36 |
+
i_image = i_image.convert(mode="RGB")
|
37 |
+
|
38 |
+
images.append(i_image)
|
39 |
+
|
40 |
+
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
41 |
+
pixel_values = pixel_values.to(device)
|
42 |
+
|
43 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
44 |
+
|
45 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
46 |
+
preds = [pred.strip() for pred in preds]
|
47 |
+
return preds
|
48 |
+
|
49 |
+
|
50 |
+
predict_step(['doctor.e16ba4e4.jpg'] # ['a woman in a hospital bed with a woman in a hospital bed']
|
51 |
+
|
52 |
+
```
|
53 |
+
|