File size: 4,345 Bytes
5423b07 b89b1ea 5423b07 b89b1ea 5423b07 b89b1ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
license: cc-by-nc-4.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- nlpguy/AlloyIngot
- liminerity/Omningotex-7b-slerp
model-index:
- name: AlloyIngotNeo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.99
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 75.95
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/AlloyIngotNeo
name: Open LLM Leaderboard
---
# merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [nlpguy/AlloyIngot](https://huggingface.co/nlpguy/AlloyIngot)
* [liminerity/Omningotex-7b-slerp](https://huggingface.co/liminerity/Omningotex-7b-slerp)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: liminerity/Omningotex-7b-slerp
dtype: bfloat16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.5, 0.3, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.5, 0.7, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: liminerity/Omningotex-7b-slerp
- layer_range: [0, 32]
model:
model:
path: nlpguy/AlloyIngot
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__AlloyIngotNeo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.02|
|AI2 Reasoning Challenge (25-Shot)|72.87|
|HellaSwag (10-Shot) |88.99|
|MMLU (5-Shot) |64.61|
|TruthfulQA (0-shot) |75.95|
|Winogrande (5-shot) |84.29|
|GSM8k (5-shot) |69.45|
|