--- language: - en library_name: peft pipeline_tag: text-generation tags: - medical license: llama2 --- # i2b2 QueryBuilder - 34b ![Screenshot](https://huggingface.co/nmitchko/i2b2-querybuilder-codellama-34b/resolve/main/Example%20Query.png) ## Model Description This model will generate queries for your i2b2 query builder trained on [this dataset](https://huggingface.co/datasets/nmitchko/i2b2-query-data-1.0) for `10 epochs` . For evaluation use. * Do not use as a final research query builder. * Results may be incorrect or mal-formatted. * The onus of research accuracy is on the researcher, not the AI model. ## Prompt Format If you are using text-generation-webui, you can download the instruction template [i2b2.yaml](https://huggingface.co/nmitchko/i2b2-querybuilder-codellama-34b/resolve/main/i2b2.yaml) ```md Below is an instruction that describes a task. ### Instruction: {input} ### Response: ```xml ``` ### Architecture `nmitchko/i2b2-querybuilder-codellama-34b` is a large language model LoRa specifically fine-tuned for generating queries in the [i2b2 query builder](https://community.i2b2.org/wiki/display/webclient/3.+Query+Tool). It is based on [`codellama-34b-hf`](https://huggingface.co/codellama/CodeLlama-34b-hf) at 34 billion parameters. The primary goal of this model is to improve research accuracy with the i2b2 tool. It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora Multi GPU](https://github.com/ChrisHayduk/qlora-multi-gpu), to reduce memory footprint. See Training Parameters for more info This Lora supports 4-bit and 8-bit modes. ### Requirements ``` bitsandbytes>=0.41.0 peft@main transformers@main ``` Steps to load this model: 1. Load base model (codellama-34b-hf) using transformers 2. Apply LoRA using peft ```python # Sample Code Coming ``` ## Training Parameters The model was trained for or 10 epochs on [i2b2-query-data-1.0](https://huggingface.co/datasets/nmitchko/i2b2-query-data-1.0) `i2b2-query-data-1.0` contains only tasks and outputs for i2b2 queries xsd schemas. | Item | Amount | Units | |---------------|--------|-------| | LoRA Rank | 64 | ~ | | LoRA Alpha | 16 | ~ | | Learning Rate | 1e-4 | SI | | Dropout | 5 | % | ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0