File size: 2,295 Bytes
8cc44ec 7aae37e ba696d8 7aae37e cd13789 8cc44ec 7aae37e 8cc44ec 7aae37e 8cc44ec f08df82 7aae37e f08df82 7aae37e 8cc44ec 7aae37e 8cc44ec f08df82 8cc44ec 7aae37e 8cc44ec f08df82 8cc44ec 7aae37e 8cc44ec f08df82 8cc44ec 7aae37e 8cc44ec 7aae37e 8cc44ec 7aae37e 8cc44ec 7aae37e 8cc44ec f08df82 8cc44ec 7aae37e 8cc44ec f08df82 7aae37e f08df82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
base_model: sileod/deberta-v3-base-tasksource-nli
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: deberta-v3-bass-complex-questions_classifier
results: []
widget:
- text: "Why did the company decide to enter the Latin America region?"
example_title: "Simple Query"
- text: "What was the Company's net profit margin in the last fiscal year, and how does it compare to the industry average?"
example_title: "Multiple Queries"
- text: "Compare the customer growth rates in the SaaS sector of CloudServices Inc. with that of SaaSSolutions Tech over the last two years."
example_title: "Comparable Query"
- text: "What are your favorite ways to show friends you're thinking of them?"
example_title: "SmallTalk Query"
- text: "Alter the proposal to emphasize sustainability practices."
example_title: "Functional Query"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-bass-complex-questions_classifier
This model is a fine-tuned version of [sileod/deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:---:|
| 0.0532 | 2.3585 | 500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.19.1
|