File size: 2,295 Bytes
8cc44ec
7aae37e
 
 
 
 
ba696d8
7aae37e
 
 
 
 
 
 
 
cd13789
 
 
 
 
 
 
 
 
 
 
8cc44ec
 
7aae37e
 
8cc44ec
7aae37e
8cc44ec
f08df82
7aae37e
f08df82
7aae37e
 
 
 
8cc44ec
7aae37e
8cc44ec
f08df82
8cc44ec
7aae37e
8cc44ec
f08df82
8cc44ec
7aae37e
8cc44ec
f08df82
8cc44ec
7aae37e
8cc44ec
7aae37e
8cc44ec
7aae37e
 
 
 
 
 
 
 
8cc44ec
7aae37e
8cc44ec
f08df82
 
 
 
8cc44ec
7aae37e
8cc44ec
f08df82
7aae37e
 
f08df82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
base_model: sileod/deberta-v3-base-tasksource-nli
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: deberta-v3-bass-complex-questions_classifier
  results: []
widget:
- text: "Why did the company decide to enter the Latin America region?"
  example_title: "Simple Query"
- text: "What was the Company's net profit margin in the last fiscal year, and how does it compare to the industry average?"
  example_title: "Multiple Queries"
- text: "Compare the customer growth rates in the SaaS sector of CloudServices Inc. with that of SaaSSolutions Tech over the last two years."
  example_title: "Comparable Query"
- text: "What are your favorite ways to show friends you're thinking of them?"
  example_title: "SmallTalk Query"
- text: "Alter the proposal to emphasize sustainability practices."
  example_title: "Functional Query"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-bass-complex-questions_classifier

This model is a fine-tuned version of [sileod/deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1  |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:---:|
| 0.0532        | 2.3585 | 500  | 0.0001          | 1.0      | 1.0       | 1.0    | 1.0 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.19.1